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ABSTRACT 

The  basic  governing  equations  for  the  'study  of 

problems  of  equilibrium  and  free  vibration  of  shallow, 

isotropic,  spherical  shells  spinning  about  their  polar 

axis  are  derived  from  a  variational  principle.  These 

equations  are  specialized  to  the  case  of  a  spinning  flat 

membrane  disk  and  the  problem  of  transverse  vibrations 

is  solved  for  the  case  of  a  fully  clamped  hub  and  the 

case  of  a  loosely  clamped  hub  on  an  annular  disk.  The 

method  of  approach  for  intermediate  hub  configurations 

is  also  discussed. 

The  vibration  analysis  of  shallow  shells  is  approached 

and it  is  noted  that  the  spinning  shell  equilibrium 

problem  must  be  solved  first  to  provide  the  necessary 

stress  and  displacement  distributions  for  the  vibration 

equations  of  motion.  The  equilibrium  problem  is  treated 

by  linear  theory  for  a  freely  spinning  shell  and  by  both 

linear  and  nonlinear  theory  for  the  spinning  shell  with 

a  fully  clamped  hub. It is  found  that  bending  effects 

are  important,  particularly  for  shells  with  a  small 

V 



ratio of rise  'to  thicknes's;  and  that a continuous 

transition  from  the  shell  solution  to  the  solution  for 

a  spinning  flat  disk  requires.  that  bending  be  included. 

The  nonlinear  effect  of  finite  'rotations.of  shell 

elements  is  found  to  be  strong,  and  the  effect  increases 

as  the  ratio  of  shell  rise  to  shell  thickness  increases. 

It is  concluded  that  a  nonlinear  theory  which  includes 

both  membrane  and  bending  effects  should  be  employed  for 

the  general  analysis of the  equilibrium  configuration. 

The  equations of motion  for  small  transverse 

vibrations  about  the  equilibrium  configuration  are 

formulated  and  reduced  to  a form suitable  for  numerical 

solution  by  an  extension  of  a  known  method. 
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CHAPTER I 

INTRODUCTION 

The  purpose  of  this  investigation  is  to  formulate the 

equations  of  static  and  dynamic  equilibrium  for  shallow 

spherical  shells  which  are  spinning  about  their  polar  axis, 

and  to  obtain  solutions  for  the  static  stress  distributions 

and  free  vibration  natural  frequencies  and  mode  shapes  for 

several  cases  of  shell  curvature  and  hub  configuration.  The 

shells  considered  in  this  analysis  are  assumed  to  conform 

to  the  usual  restrictions  of  shallow  shell  theory  and  in 

addition  are  assumed  to  be  isotropic.  The  static  stress 

analysis  is  formulated  allowing  for  finite  rotations,  but 

solutions  are  obtained  both  with  this  assumption  and  with 

the  assumption  of  infinitesimal  rotations.  The  free  vibra- 

tion  problem  is  formulated  as  one  of  small  perturbations 

about  the  static  equilibrium  configuration.  Various  aspects 

of  this  general  problem  area  have  been  treated  in  the 

literature,  however  the  unified  formulation  of  the  theory 

and  the  solutions  for  the  special  cases  presented  here  are 

new. 

The  necessity  for  the  design  of  efficient,  light- 

weight  structures  for  space  applications  h.as  led  to  the 
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consideration  of  centrifugally  stabilized  shells. In this 

type of structure  advantage  is  taken  of  the  fact  that  the 

static  stress  distribution  in  a  shell  spinning  about  its 

polar  axis  essentially  generates  a  pre-stressed  configuration 

which  has  a  substantial  resistence to deformation  from  the 

equilibrium  shape  even  though  the  material  has  practically 

no  inherent  structural  rigidity.  In  this  way  a  shallow 

shell,  such  as  a  radar  dish,  can  be  constructed  of  a  flexible, 

light-weight  synthetic  material  and  stabilized  in  shape  by 

spinning  it  about  its  axis  of  symmetry. 

Various  applications of centrifugally  stabilized  shell 

structures  have  been  proposed  [1,2,3,4].  Included  among 

these  are  collectors  for  solar  furnaces,  radio  and  radar 

antennas,  solar  sails,  and  drag  modulation  devices  for  re- 

entry  from  space.  All  these  proposed  uses  have  in  common 

the  necessity  to  provide  a  precise  shell  or  disk  geometry 

in  the  presence of known  or  random  disturbances  with  a 

minimum  of  structural  weight. 

Initial  interest  in  the  solution  of  the  vibration  problems 

of spinning  disks,  the  limiting  case  of  a  spinning  shallow 

spherical  shell,  arose  in  connection  with  the  design  of 

high  speed  rotating  machine  elements  such  as saw blades 

and  turbine  disks. In general,  a  complete  analysis  of  these 

problems  would  require  the  consideration  of  the  bending 

stiffness  of  the  disk  material  and  the  in-plane  membrane 

stresses  due to centrifugal  body  forces.  Early  investigators 
-2- 



found  that  the  solution  of  the  general  case  posed  consider- 

able  mathematical  complexity  and  elected  to  study  separately 

the  cases  in  which  rotational  effects  were  negligible  and 

the  cases  in  which  bending  stiffness  effects  were  over- 

shadowed  by  rotational  effects.  Analysis  of  the  situations 

in  which  bending  stiffness  is  predominant  led  to  a  mathemat- 

ical  formulation  for  plate  vibrations  which  was  studied 

initially  by  Kirchoff  and  which  is  presently  developed to  a 

high  degree. 

The  case  in  which  rotational  effects  are  of  primary 

importance  led  directly  to  the  study  of  spinning  membrane 

disks.  Lamb  and  Southwell [5,61 discuss  the  problem  of 

small  transverse  vibrations  of  a  spinning  circular  membrane 

which  has  no  hole  at  the  center  and  has  a  free  outer  edge. 

This  problem  is  shown  to  reduce  to  that  of  obtaining  solutions 

to  the  hypergeometric  equation  which  are  finite  at  two 

singularities.  The  solutions  are  in  the  form  of  Jacobi 

polynomials.  Southwell [6] extends  the  analysis  to  the 

study of the  transverse  vibrations  of  a  spinning  membrane 

whose  transverse  deflections  are  constrained  to  be  zero  in 

an  interval  r < a  and  whose  outer  edge  is  free.  The  central 

clamping  is  such  that  radial  displacements  are  unrestrained. 

The  solution  to  this  problem  necessitates  finding  hypergeometric 

functions  which  vanish at  r = a  and  are  finite  at  the  outer 

edge.  Simmonds 173 considers  the  same  problem  and  points 
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out  that  Southwell's  paper  contains an error  since it over- 

looks the  fact  that  the  hypergeometric  equation  cannot  have 

two  independent  solutions  involving  only  terms  containing 

the  hypergeometric  series 2F1(a, B ,  y, x)  if  the  parameter 

y assumes  integral  values.  Johnson [ 8 1  has  also  published 

solutions  to  the  same  problem  as  part  of  his  investigations 

of the  vibrations  of  shallow  elastic  membrane  shells.  His 

results  reflect  the  same  error  as  Southwell's  for  non- 

axially  symmetric  vibrations.  Lamb  and  Southwell [SI use 

their  membrane  analysis  results,  Kirchoff's  non-rotating 

results  and  Rayleigh's  principle  to  approximate  from  below 

and  above  the  natural  frequencies  of  free  vibrations  for a 

spinning  disk  including  both  bending  stiffness  and  rotational 

effects. 

The  case  when  the  central  clamping  is  such  that  radial 

displacement  is  completely  or  partially  restrained  is  more 

difficult  to  analyze.  The  restraint  on  radial  displacement 

gives  rise  to a more  complex  in-plane  membrane  stress 

distribution.  The  resulting  differential  equation  governing 

the  radial  dependence  of  the  vibration  mode  shapes  is  of 

the  Fuchsian  type  with  four  regular  singular  points. In 

principal,  this  type  of  differential  equation  can  be  reduced 

to  a  form  studied  by  Heun [9]. However,  as  discussed  in 

the  present  analysis,  it  is  more  convenient  not  to  make  the 

reduction  in  this  case.  It  is  found  that  solutions  for  the 
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radial  mode  shapes  appear  as  power  series  whose  coefficients 

depend on a  four  term  recurrence  relation.  Hence,  the 

problem w'ith central  clamping  is  correspondingly  more  diffi- 

cult  in  the  computational  sense  than  is  the  problem  without 

central  clamping.  Solutions  for  the  natural  frequencies 

of  vibration  for  flat  spinning  membrane  disks  with  several 

hub  configurations  constitute  a  portion  of  the  present 

investigation. 

Bulkeley  and  Savage [lo] have  studied  the  centrally 

clamped  membrane  for  the  case  of  axisymmetric  vibrations. 

Their  results  are  for  various  degrees  of  partial  clamping 

up  to  and  including  the  fully  clamped  configuration. 

Simmonds [111 has  studied  the  fully  clamped  case  for  axi- 

symmetric  vibrations.  Both  investigations  find  that  while 

the  general  vibrations  are  governed  by  an  equation  of 

motion  which  reduces  to  Heun's  equation,  the  axisymmetric 

case  reduces  to  the  hypergeometric  differential  equation. 

The  most  difficult  boundary  value  problem  for  the 

spinning  membrane  occurs  if  it  is  annular  and  hubless. 

This  case  was  studied  by  Eversman [12]. It is  found  in  this 

case  that  reduction  of  the  radial  mode  shape  differential 

equation to Heun's  equation  is  convenient.  In  this  form, 

two  of  the  singularities  of  Heun's  equation  correspond  to 

the  inner  and  outer  edges of the  annulus  and  the  boundary 

value  problem  is  that  of  finding  solutions  which  are  finite 
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at  two  singular  points.  Eversman  also  found  that  the 

axisymmetric  vibrations of the  annular  membrane  reduced 

to  the  hypergeometric  equation  and  that  the  case  of  one 

nodal  diameter  reduced  to  a  form  of  Heun's  equation  which 

admits  a  polynomial  solution.  This  was  shown  to  correspond 

to  a  rigid  body  precession  mode. 

Interest  in  static  and  dynamic  problems  of  spinning 

shells  appears  to  be  relatively  recent.  Explicit  attention 

to  the  equilibrium  stress  distribution  in  a  shallow  spherical 

which  is  spinning  about  its  polar  axis  was  given  minor 

attention  by  Reissner [131 in  his  important  paper  which 

presents  solution  techniques  for  the  equations  of  shallow 

spherical  shell  theory  in  the  case  of  axisymmetric  loading. 

He gives  a  particular  solution  of  the  governing  equations  in 

the  case  of  the  inertia  load  on  a  rotating  shell. No attempt 

is  made  to  obtain  a  complete  solution  for  various  boundary 

conditions.  The  shell  equations  used  by  Reissner  are  based 

on  the  assumption  of  small  displacements  and  rotations,  a 

condition  which  might  not  be  met  if  the  shell  is  spinning 

rapidly or the  stiffness  of  the  shell  material  is  low. A 

subsequent  paper  by  Reissner [14] based on nonlinear  shell 

and  membrane  theories  of  Marguerre [15] , H ,  Reissner  [16], 

and  Bromberg  and  Stoker  [17]  allows f o r  the  possibility 

of  finite  rotations. A numerical  integration  scheme  for 

nonlinear  two-point  boundary  value  problems  for  shells of 

-6- 



revolution  has  been  presented  by  Archer  [181.  As  a  limiting 

case  of  the  nonlinear  shallow  shell  theory  Simmonds  [19] 

obtains  solutions  for  the  transverse  displacement  of  a 

normally  loaded  spinning  membrane  disk. 

Cohen  [20,21]  has  solved  the  problem  of  the  static 

equilibrium  configuration  of  a  spinning  paraboloidal  dish. 

His  theory  is  based on a  different  set of governing  linear 

equations  than  is  Reissner's  and  has  the  potential  short- 

coming  that  all  boundary  conditions  cannot  be  satisfied 

simultaneously. 

The  first  investigator  who  specifically  treated  the 

statics  and  dynamics  of  spinning  shallow  membrane  shells 

appears  to  have  been  Johnson  181.  His  study  is  based on 

Reissner's  nonlinear  shallow  shell  theory  for  the  membrane 

case.  The  vibration  problem  is  considered  to  be  one  of 

small  perturbations  about  the  equilibrium  state  assumed  by 

the  spinning  membrane  shell.  He  finds  that  the  equilibrium 

state  is  easily  calculated  and  is  one  in  which  there  is  no 

meridional  stress,  independent  of  the  curvature  of  the  shell. 

This  observation  is  inconsistent  since  it  is  known  in  the 

limiting  case  of  a  shallow  shell  which  is  a  flat  disk  that 

the  radial  stress  does  not  vanish.  A  consistent  theory 

would  show  a  continuous  transition  from  the  stress  distri- 

bution  of  a  shallow  shell  to  that  of  a  flat  disk.  This 

continuous  transition  is  accounted  for  at  the  expense of 
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a  more  complicated  theory  if  bending  effects  are  included. 

A second  inconsistency in the  membrane  theory is the 

impossibility of satisfying  certain  boundary  conditions, 

even  if  the  stress  distribution  is  primarily  of  a  membrane 

type. As pointed  out  by  Johnson,  this  difficulty  is  probably 

not  serious  since  a  boundary  layer  analysis  [14]  would  show 

that  bending  effects  are  important  only  in  the  immediate 

vicinity  of  the  edge  for  shell  geometries  for  which  membrane 

theory  is  nearly  correct. 

The  general  equations  for  equilibrium of rotationally 

symmetric  spinning  membrane  shells  were  formulated  from  a 

variational  principal  by  Simmonds  [l]. He  obtained  the 

equations in a  form  such  that  the  problem of determining 

the  appropriate  initial  shell  shape  in  the  non-spinning  state 

in  order  to  obtain  a  desired  shell  configuration  in  the 

spinning  state  could  be  solved. As computational  examples 

he  cites  the  cases  of  the  flat  disk,  sphere,  and  paraboloid 

with  conical  covering. 

Other  than  Johnson's [8] investigations of the  vibrations 

of  shallow  membrane  shells,  there  have  apparently  been  no 

published  investigations  of  the  free  vibration  characteristics 

of spinning  shallow  spherical  shells.  There  have  been 

numerous  studies  dealing  with  the  free  vibrations  of 

stationary  shallow  spherical  shells.  Reissner  [22,23]  and 

Johnson  and  Reissner  1241  neglect  the  effect of  longitudinal 
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inertia on the  predominantly  transverse  vibrations  of 

shallow  shells.  When  this  is  done, it is found,  just  as 

in  the  static  case,  that  the  dynamic  equations  can  be 

reduced to two  simultaneous  equations  for  the  displacement 

and  a  stress  function.  Kalnins  and  Naghdi [251 extend  the 

idea to three  different  degrees  of  neglect  of  the  effect 

of  longitudinal  inertia.  One  of  their  forms  of  the  equations 

corresponds to those  used  by  Johnson  and  Reissner. 

The  case  of  vibrations  of  the  spinning  shell  is 

significantly  more  complicated  than  the  equivalent  problem 

for  the  non-spinning  shell.  Of  major  importance  is  the 

fact  that  in  the  spinning  case  the  equilibrium  configuration, 

about  which  vibrations  occur,  is  not  a  zero  stress  state. 

This  pre-stressed  condition  gives  rise  to  membrane  restoring 

forces  in  addition  to  those  associated  with  the  usual  shell 

theory. An additional  complication  arises  because  of  the 

Coriolis  acceleration  coupling  between  the  components  of 

displacement  which  arises  due to spin.  Because  of  these 

additional  difficulties  most  of  the  solution  techniques 

available  in  the  literature  cannot  be  applied  to  the  present 

situation. 

Numerical  approaches  to  the  free  vibration  eigenvalue 

problem  for  spinning  shells  are  required.  Two  distinct 

methods  appear  in  the  literature. In one  method,  most 

recently  reported  by  Zarghamee  and  Robinson [26], values 
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for  the  natural  frequency  are  assumed  and  the  equations  of 

motion  are  integrated  by  a  suitable  technique  to  see  if 

the  boundary  conditions  can  be  satisfied. If they-are not 

satisfied,  a  new  value  is  assumed  for  the  natural  frequency 

and  the  process  is  repeated.  The  vanishing  of  a  certain 

determinant  which  is  a  continuous  function  of  the  assumed 

frequency  indicates  the  satisfaction  of  the  boundary  condi- 

tions.  An  iterative  process  based  on  the  value  of  this 

determinant  can  be  used  to  find  the  frequency  at  which  it 

vanishes. In  the  second  method,  due  to  Cohen [ 2 7 ] ,  the 

mode  shape  is  iterated  on  and  convergence  is  obtained  when 

the  sequence  of  frequency  estimates  based on successive 

mode  estimates  reaches  a  minimum.  The  former  procedure  is 

an  extension  of  Holzer's  method  and  the  latter  an  extension 

of  Stodola's  method. 

This  research  program  deals  with a broad  range of 

problems  within  the  general  framework  of  the  study  of  the 

static  and  dynamic  characteristics  of  shallow  spinning 

shells.  The  general  equations  of  static  and  dynamic 

equilibrium  are  formulated  from  a  variational  principle. 

The  equations  of  motion  for  free  vibrations  are  obtained  in 

terms  of  small  perturbations  about  the  equilibrium  configura- 

tion  assumed  by  the  spinning  shell. It is  shown  that  the 

linear  and  nonlinear  shallow  shell  theories  of  Reissner 

correspond  to  the  present  equations in the  static  case. 
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The spinning  disk  equations  presented  by  Timoshenko  and 

Goodier [28] are  the  limiting  case  of  these  shallow  shell 

equations.  The  spinning  membrane  shell  vibration  equations 

of  Johnson [8] can  be  shown  to  be  identical  with  the 

vibration  equations  obtained  in  the  present  analysis.  The 

equations of motion  for  the  transverse  vibrations  of 

spinning  membrane  disks  studied  by  Simmonds 171 and 

Eversman [12] and the  equations  of  motion  for  the  in-plane 

vibrations  of  spinning  disks  treated  by  Simmonds [291 are 

special  cases  of  the  results  obtained  in  this  investigation. 

Several  digital  computer  routines  have  been  written  to 

evaluate  various  aspects  of  the  theory  developed  herein. 

Three  programs  have  been  written  to  calculate  the  static 

stress  distribution  in  a  spinning  shallow  shell.  One  program 

is  for  the  calculation  of  the  stress  distribution  in  a 

freely  spinning  shell  (no  hub)  using  an  analytically 

developed  solution  to  Reissner's  linear  equations.  The  other 

two  programs  deal  with  the  case of the  shell  with  a  fully 

clamped  hub.  One  utilizes  Reissner's  linear  theory  and  the 

other  utilizes  his  nonlinear  theory.  These  static  stress 

calculations  were  carried  out  and  are  reported  here  since 

they  must  be  available  before  a  vibration  analysis  can  be 

carried  out.  Of  particular  theoretical  interest  is  the 

comparison  of  the  linear  and  nonlinear  theory  and  the 

shell  geometries fo r  which a nonlinear  theory  must  be  used 

-11- 



and  those  for  which  a  linear  theory is adequate. .In addition, 

the  shell  configurations  for  which  a  bending  theory is 

required  and  a  membrane  theory  is  inadequate  are  clearly 

shown. 

The  results  of  Simmonds 171 and  Eversman [12] for  the 

natural  frequencies of free  transverse  vibrations  of  spinning 

membrane  disks  have  been  extended  in  this  investigation  by 

the  computation  of  results  for  the  case  of  an  annular 

membrane  with  a  frictionless  hub  and  for  the  most  physically 

significant  case,  that of a  fully  clamped, or "built-in" 

hub  configuration.  The  intermediate  case  of  partial  clamping, 

studied  by  Bulkeley  and  Savage [lo] in  the  axisymmetric 

case,  is  also  discussed  in  the  general  case. 

The  equations  of  motion  for  the  shell  vibrations  have 

been  formulated  in  a  way  appropriate  for  the  determination 

of  the  natural  frequencies  by  the  method  of  Zarghamee  and 

Robinson [ 2 6 ] .  The  procedure  is  much  more  complicated  than 

their  analysis  since  the  equilibrium  stress  and  displacement 

distribution  must  be  computed  prior  to  or  during  the 

iteration  scheme  and  appears  as  a  variable  coefficient  in 

the  differential  equations. No numerical  results  have  been 

obtained  due to the  limitations  of  available  computational 

equipment. 
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CHAPTER 2 

EQUATIONS OF MOTION 

2.1 Preliminary  Considerations 

We  will  be  interested  in  deriving  the  equations  of 

motion  for  the  free  vibrations  of  a  shallow  spherical  shell 

which  is  spinning  about  its  axis  of  symmetry. It will  be 

assumed  that  the  shell is isotropic  and  that  the  basic 

assumptions  inherent  in  Reissner's  linear  and  nonlinear 

theories [14,30] are  valid.  The  vibrations  will  be  considered 

to  be  small  perturbations  about  the  equilibrium  configura- 

tion  assumed  by  the  shell  when  spinning.  Since  the 

equilibrium  configuration  must  be  established  before  the 

dynamic  problem  can  be  solved,  the  static  and  dynamic 

problems  will  be  formulated  separately.  The  equilibrium 

problem  will  be  formulated  allowing  for  finite  rotations. 

2.2 Axis  System  and  Nomenclature 

The  axis  system  utilized  in  this  analysis  is  identical 

to  the  one  used  by  Reissner [30]. As seen  in  Figure 1, the 

equation  describing  the  shallow  spherical  shell,  measured 

from  the  base  plane,  is 
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and  the  local  slope is 

The  approximation  in  Eq. (2.2.2) is  the  shallow  shell 

approximation  based on the  assumption  that 

f 
Q 

L C  

The  basic  shell eql 

(2.2.2) 

lations  will  be  formulated  in  terms 

of displacements  which  are  meridional,  tangential,  and 

normal,  as  shown  in  Figure 2. This  is  the  convention  used 

by  Reissner  in  his  linear  theory [30]. In  his  nonlinear 

theory  he  uses  displacements  which  are  radial,  tangential, 

and  axial,  as  shown  in  Figure 3 .  The  connection  between 

the  two  systems,  within  the  scope of shallow  shell  theory, 

is 

(2.2.3) 



r 

where  the  barred  quantities  refer to the  system  in  which 

the  deflections  are  radial,  tangential,  and  axial. 

2.3 Static  Equilibrium  Equations 

The  equilibrium  configuration  for  the  spinning  shell 

is one  of  axial  symmetry  since  the  shell  and  load  are  both 

axially  symmetric.  The  following  fundamental  relations, 

specialized  for  the  axisymmetric  case  and  consistent  with 

the  theory  of  shallow  isotropic  shells  [14,30,42],  will  be 

used: 

Strain-Displacement 

Stress-Strain 

(2.3.1) 

(2.3.2) 
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Curvature  Change-Displacement ~ ~~ 

v, = - c7; 9, \ (2.3.3) 

The  co-ordinate $ which  appears  in  the  strain-displacement 

relations  is  the  distance  from  the  mid-surface of the  shell 

to  a  shell  element,  measured  outward  along  the  local  normal. 

The  strain  energy of the  deformed  shell  is  given  by 

(2.3.4) 

If we write  the  strain-displacement  expressions  as 

where  er  and e, are  mid-surface  strains, we obtain  for  the 

strain  energy 
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If we integrate  on and note  that er, eo, K~~ K o, being 

mid-surface strains and curvature changes, are not 

functions  of <, we  obtain 

(2.3.7) 

where 

and t  is the  shell thickness, assumed constant. 

As shown  in  Figure 4,the inertia load of an element of 

the  shell  is  horizontal and given by 
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where  m is the  constant  mass  density  of  the  shell  and w is 

the  spin  angular  velocity.  The  corresponding  potential 

for  the  element  is 

By  combining  the  strain  energy of the  shell  and  the  potential 

energy  of  the  load,the  total  potential  energy  of  the  shell 

is  given  by 

By  introducing  the  strain-displacement  relations  and  using 

the  principle  of  minimum  potential  energy we obtain  the 

variational  problem 
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The  Euler  equations  for  this  variational  problem  are 1321 

where Wr and  are the mid-surface stresses. The boundary 

conditions to be satisfied  will  consist  of  the  hub  conditions 

on  some hub radius and the  natural boundary  conditions  on 

the free  outer edge, which  are 

Q 
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Tf = 0 (2.3.12) 

These  conditions  correspond  respectively  to  the  vanishing  of 

the  bending  moment,  the  Kirchoff  condition,  and  the  vanishing 

of  the  meridional  stress  at  the  free  edge. 

2.4 Reduction  of  the  General  Equations  to  Special  Cases 

A. The  Spinning  Flat  Disk 

In  this  case  Eq. (2.3.10) is  the  only  one  applicable 

since  when R becomes  infinite  there  is  no  transverse  load. 

Hence  as C-we obtain 

(2.4.1) 

which  corresponds  to  the  result  obtained  by  Simmonds [29]. 

In  the  case  when  we  assume 

we  obtain 
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which  corresponds  to  the  governing  equation  derived  by 

Timoshenko  and  Goodier [28]. Simmond's  equations  for  the 

finite  deflection of a  normally  loaded  spinning  membrane 

can  be  obtained  from  Eqs. (2.4.2) and (2.3.10) by  allowing 

R-O,D-oand  replacing  the  inertia  load  in Eq. (2.3.11) 

by  a  normal  pressure+  to  obtain 

I 
c c 

B. The 

The 

Linear  Reissner 

linear  Reissner 

(2.4.3) = T  

Equations 

equations  in  the  axisymmetric 

case  can  be  obtained  by  neglecting  the  non-linear  term  in 

Eq. (2.3.11) which  arises  because of the  inclusion of the 

effects of finite  rotations,  and  by  assuming 
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With  these  conditions we obtain 

( 2 . 4 . 4 )  

(2.4.5) 

Equation ( 2 . 4 . 5 )  corresponds  to  Reissner's  Eq.  (16)  in  the 

axisymmetric  case [30], with 

Equation ( 2 . 4 . 4 )  corresponds  to  Reissner's  Equation  (3a) 

in  the  axisymmetric  case  with 

C. Reissner's  Nonlinear  Equations 

Reissner's  shallow  shell  equations  which  include 

the  effects of finite  rotations 1141 can  be  obtained  from 

the  present  theory  by  introducing  a  stress  function  and 

deformation  variable,  and  properly  accounting  for  the 
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transition  from  displacements  in  the  meridional,  tangential, 

and  normal  directions,  to  displacements.  in  the  radial, 

tangential,  and  axial  directions. 

Prior  to  obtaining  the  equations of equilibrium,  the 

appropriate  strain-displacement  relations  for  the  pertinent 

type  of  displacements  can  be  obtained  from  Eqs. (2.3.1) 

and  the  transformations  of  Eqs.  (2.2.3) : 

(2.4.6) 

Here we have  not  used  the  barred  quantities to distinguish 

the  co-ordinate  system. 

Equation  (2.3.10) , with  the  assumption 

(2.4.7) 

is equivalent  to  Reissner's  Eq.  (2.21). In the  present 

notation  we  have 
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This  implies  the  existence  of  a  stress  function  such  that 

. c w c = *  

The  differential  equation  which vsatisfies can  be 

obtained  from  the  appropriate  compatibility  equation.  It 

is  not  difficult  to  verify  that we must  have  for  the  mid- 

surface  strains [141 

By making  use of the  stress-strain  relations 

and  the  definition  of  the  stress  function we obtain 

If we introduce  a  displacement  variable  such  that (P 
d &  - " d r  + 
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there  results 

A second  equation  is  obtained  from Eq. (2.3.11)  by 

introducing  the  stress  function  and  displacement  variable 

and  employing  the  approximation  of  Eq.  (2.4.7): 

Upon  integration we obtain  the  second  governing  equation 

(2.4.9) 

where  the  constant of integration  has  been  shown  to  be  zero 

because  of  the  free  edge  conditions. 

It  is  of  interest  to  note  that  Eqs.  (2.4.8)  and  (2.4.9) 

require  only  four  boundary  conditions.  The  vertical  edge 

reaction  at  the  outer  edge  is  automatically  satisfied  and 

no  condition on&-is required  unless  the  displacement  is 

desired  from  a  further  integration  of . + 
A second  form  of  Eqs.  (2.4.8)  and  (2.4.9) in terms  of 

stress  resultants  rather  than  stresses  is 
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where 

and 

2.5 Equations  of  Motion  for  Small  Free  Vibrations  About 

the  Equilibrium  Configuration 

The  equations  of  motion  for  the  free  vibrations  of  the 

spinning  shallow  spherical  shell  will  be  obtained  by  con- 

sidering  small  perturbations  about  the  equilibrium 

configuration  assumed  by  the  spinning  shell.  The  dynamic 

theory  will  be  based  on  the  same  assumpti.ons  as  the  static 

theory  with  the  exceptions  that  the  perturbations  will 

have  infinitesimal  rotations  and  the  possibility of asymmetric 

motions  will  be  included. 

The fundamental  relations  to  be  used  are  the  following: 
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Strain-Displacement 

Stress-Strain 

Curvature Chancre-DisDlacement 

(2.5.2) 

(2.5.3) 
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The s t r a i n   e n e r g y  of the de fo rmed   she l l  i s  

I n  terms of s t r a i n s   a l o n e   t h i s  becomes 

I n   t h e  s t a t i c  case t h e   i n e r t i a  load e n t e r e d   t h e  

formula t ion  as an   equiva len t   appl ied   load   and   hence  as 

a c o n t r i b u t o r  t o  t h e  t o t a l  s h e l l   p o t e n t i a l   e n e r g y .   I n   t h e  

dynamic case t h e   i n e r t i a  load a p p e a r s   n a t u r a l l y   i n   t h e  

k ine t i c   ene rgy   and   shou ld   no t  be c o n s i d e r e d   s e p a r a t e l y .  By 

fo l lowing   t he   deve lopmen t   i n   t he  s t a t i c  e q u i l i b r i u m  case 

w e  o b t a i n   f o r   t h e   t o t a l   p o t e n t i a l   e n e r g y  

(2.5.4) 
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where  er, e*,  gr* are  the  strains  in  the  shell  mid-surface. 

To obtain  the  kinetic  energy we must  derive  the 

expressions  for  the  absolute  velocity  components  of  a  shell 

element. In an  axis  system  fixed  to  the  shell  and  oriented 

with  axes  in the local  meridional,  tangential,  and  normal 

directions  the  velocity  of  a  shell  element  relative to the 

shell  is 

- - 
where eq? ee, e are  unit  vectors  in  the  meridional, 

tangential?  and  radial  directions,  respectively. The 

angular  velocity,  in  the  same  axis  system  is 

- 
r 

where  the  shallow  shell  approximation  has  been  used  in 

resolving  the  components.  The  position  vector of a  dis- 

placed  mass  element  is 

and the  velocity  of  the  origin of the  axis  system  (coincides 

with  the  undeformed  element)  is 
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The  absolute  velocity  of  an  element is 

which  yields 

(2.5.5) 

The  kinetic  energy  of  the  deforming  shell  is  then  written 

J (2.5.6) 

The  governing  equations  of  motion  are  obtained from 

Hamilton's principle: 
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By, rep lac ing  er, eeI and  gr,in Eq. (2..5.4) by  th: 

d e f i n i t i o n s  from Eqs. (2 .5 .1)  I w e  o b t a i n   f o r   t h e  7 

problem 
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The  -shell  displacements  will be taken  in  the form 

Where u#), d0(r) are  the shell displacements  in  the 

equilibrium  configuration  of  spin  about  the  shell  axis arid 

u*,  v*,cg*  are  assumed  to  be small perturbations  about  the 

equilibrium  position. If these  expressions  for  u, v, and 

&are  inserted  into Eq. (2.5.7) and  the  result  is 

rearranged  slightly  to  group  terms  involving  the  equilibrium 

displacements, we obtain 
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By rep lac ing  err and   gre   in  Eq. (2.. 5.4) by t h e i r  

d e f i n i t i o n s  from Eqs. (2.5.1) we o b t a i n   f o r   t h e   v a r i a t i o n a l  

problem 

(2.5.7) 
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The shell displacements  will be taken  in  the form 

Where u,(f), dO(f) are  the  shell  displacements  in  the 

equilibrium  configuration  of  spin  about  the  shell  axis  and 

u*, v*,&* are  assumed  to  be  small  perturbations  about  the 

equilibrium  position. If these  expressions  for  u,  v,  and 

&are  inserted  into Eq. (2 .5.7)  and  the  result  is 

rearranged  slightly  to  group  terms  involving  the  equilibrium 

displacements, we obtain 
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(2.5.8) 



By r e f e r r i n g   t o  Eq. (2.3.91, which  def ines   the 

equi l ibr ium  configurat ion,   and by u s i n g   t h e   f a c t   t h a t   t h e  

p rocesses   o f   va r i a t ion   and   i n t eg ra t ion   can   be   i n t e rchanged ,  

it i s  n o t e d   t h a t   t h e   v a r i a t i o n   o f   t h e   f i r s t   i n t e g r a l   i n  

Eq. (2.5.8)  vanishes. To i n t e r p r e t   t h e   s e c o n d   i n t e g r a l  

term i n   t h e   v a r i a t i o n  w e  no te   t ha t   t he   s t r a in -d i sp lacemen t  

r e l a t i o n s   o f  Eqs.  (2.5.1) become 

We n o t e   t h a t   t h e   s t r a i n s   c a n  be broken down i n t o   t h e  sum 

o f   equ i l ib r ium  s t r a ins  and p e r t u r b a t i o n   s t r a i n s  

where, a s p rev ious ly   de f ined ,   t he   equ i l ib r ium  s t r a ins   a r e  

The p e r t u r b a t i o n   s t r a i n s ,   d e f i n e d  as t h e   a d d i t i o n a l   s t r a i n s  
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due  to  perturbation  of  the  shell  from  its  equilibrium 

configuration,  are 

The  second  integral  term  can  then  be  written 

This  is  recognized  as a variation  problem  involving  the 

equilibrium  loads  and  stresses  acting  on  the  perturbation 

strains  and  displacements. As such,  the  variation  must 

vanish.  Hence,  the  variation  problem  reduces  to 
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The Euler  equations  for  this  variational  problem are 1321 

(2.5.9) 
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whereWr*, s-*, are  mid-surface  perturbation  stresses  and 

where,  in Eq. (2.5.10),  the  shallow  shell  approximation 

-44 I , was  used.  The  boundary  conditions  for  this  set  of P 
R 
partial  differential  equations  will  consist  of  the  hub 

7;; 

conditions at  the  hub  radius  and  the  free  edge  conditions 

at  the  outer  edge  of  the  disk.  The  dynamic  boundary  condi- 

tions  are  the  same  as  static  boundary  conditions  and  are 
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where fta i s  t h e  hub radius   andP= b i s  t h e   s h e l l   o u t e r   r a d i u s .  

I n  terms o f   t h e   p e r t u r b a t i o n   q u a n t i t i e s   t h e s e  become: 

c = a: 
d ( a )  = ++(a) = &*(a) = o 

c9;?F(d) = 0 

I t  should be no ted   t ha t   t he   d i sp l acemen t s   a r e   r e f e r r ed  

to   the   uns t ressed   conf igura t ion   and   hence   the   per turba t ion  

q u a n t i t i e s  are i n   d i r e c t i o n s   e s t a b l i s h e d  by t h e  shape  of 

t h e   s h e l l   b e f o r e  it i s  spun. Simmonds [ll has  circumvented 

t h i s  problem t o  some degree by e s t ab l i sh ing   an   i n t e rmed ia t e  

r e fe rence   f r ame   a s soc ia t ed   w i th   t he   she l l   equ i l ib r ium 

conf igu ra t ion   and   pe r tu rba t ions   can   be   r e f e r r ed   t o   t h i s  

system.  For  vibration  problems of s h a l l o w   s h e l l s  it is not  

f e l t   t h a t   t h i s   r e f i n e m e n t  i s  j u s t i f i e d .  

2.6 Reduction  of t h e  D i f f e r e n t i a l   E q u a t i o n s   f o r   S p e c i a l  

Cases 

A. The Transverse  Vibrat ions  of  a F la t   Sp inn ing  
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C i r c u l a r  Plate 

I n   t h i s  case the   r ad ius   o f   cu rva tu re  i s  . i n f i n i t e  

and t h e   e q u i l i b r i u m   d e f l e c t i o n   i n   t h e   n o r m a l ,  o r  transverse, 

direction  vanishes.   Equation  (2.5.11)  decouples  from 

Eqs.  (2.5.9)  and  (2.5.10)  and becomes 

( 2 . 6 . 1 )  

The boundary  condi t ions  are  

B. In-Plane  Vibrat ions of a F l a t   S p i n n i n g   C i r c u l a r   P l a t e  

As no ted   i n  ( A ) ,  i n   t h e  case of a f l a t   p l a t e   t h e  

transverse and  in-plane  vibrations  decouple.  I n  t h i s   c a s e ,  

w i th   t he   r ad ius   o f   cu rva tu re   i n f in i t e ,   t he   i n -p l ane   v ib ra t ions  

are governed  by  Eqs.  (2.5.9)  and  (2.5.10) 
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(2.6.2) 

(2.6.3) 

with  boundary  conditions i n  t h e  clamped  hub case 

This  problert,  corresponds t o  the   one   s tud ied  by Simmonds 

[291 

C. The Transverse  Vibrat ions  of  a F la t  Spinning 

Membrane Disk 

I n   t h e   c a s e   o f  a membrane d i s k   t h e   b e n d i n g   s t i f f n e s s  

vanishes,  so t h a t  D/t = 0.  W e  w i l l  thus  have 

(2.6.4) 
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I 

which .is the g.overning  differential  equation  for  the  studies 

of  several  authors [ 5 , 6, , 7 , 10 I 11,121'. 
In  this  case  the  boundary  conditions  are  different  than 

for  the  case of the  plate  because  of  the  vanishing  of  the 

bending  stiffness,  and  hence  the  bending  moment. At the  hub 

radius  only  the  transverse  displacement  can  be  set to zero, 

while  at  the  outer  edge  only  the  requirement of the  finiteness 

of  the  deflection  can  be  imposed.  Hence we will have 

D. The Vibrations  of a Spinning  Shallow  Spherical 

Membrane  Shell 

In  the  membrane  shell  theory,  the  bending  stiffness 

vanishes so that Eqs. (2.5.91, (2.5.10) I and (2.5.11) become 

(2.6.5) 

(2.6.6) 
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(2.6.7) 

These  equations  can  be  shown to be  equivalent to those 

derived  by  Johnson [ 8 1  and  solved  for  some  special  cases. 

This  equivalence  can  be  established  by  noting  that  Johnson 

utilizes  displacements  which  are  axial,  radial,  and 

tangential,  whereas  the  present  analysis  uses  normal, 

meridional,  and  tangential  displacements.  Within  the  shallow 

shell  approximation  the  relationship  between  the  two 

displacement  systems is 

Furthermore,  to  the  same  order of approximation,  the  stresses 

Tf and vre are  considered  to  be  representative of either  the 

mid-surface  or  "horizontal"  stresses. 

It can  be  seen  that Eq. (2.6.6) becomes 
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Equation (2.6.5) can be used to show  that 

(2.6.10) 

By using Eq. (2.6.9),  Eq.  (2.6.7) can  be  written 

(2.6.11) 

(2.6.12) 

An equation  for  dynamic  equilibrium  in  the  horizontal 
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direction  is  obtained by resolving Eqs .  (2.6.5) and (2.6.7) 

in  the  horizontal  direction  and  utilizing  the  shallow  shell 

approximation  that-  and vf& are  taken  as  the  horizontal 
stresses.  Following  this  procedure we obtain- 

8 

(2.6.13) 

where  it  has  been  assumed  that 

Again,  employing Eqs, (2.6.8) we obtain 

(2.6.14) 

In summary, f o r  the  case of displacements in the  axial, 

radial,  and  tangential  directions, we have, in the  membrane 

case 
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(2 -6 . 16) 

Equations  (2.6.15) , (2.6 . 16) , and  (2.  6 . 17) are  identical 
to  Johnson's  equations  specialized  to  the  case  of  a  spherical 

shell. 

To supplement  Eqs.  (2.6.15),  (2.6.16)  and  (2.6.17) it 

is  necessary to give  the  mid-surface  strain-displacement 

relations  for  the  perturbation  quantities.  We  previously 

have  stated  these  relations  for  the  axis  system  which  is 

meridional,  tangential,  and  normal.  They  were 

If we make  the  transition  of  co-ordinates  given by 
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Eqs.  (2.6.3)  these become i n  the r a d i a l ,   t a n g e n t i a l ,   a n d  

ax ia l  d i r e c t i o n s  

(2.6.18)  

(2 .6 .19)  

The v ib ra t ion   equa t ions   i n   t he   fo rm  o f  Eqs. (2.6.15),  

(2 .6 .16)  , and (2 .6 .19)  have   t he   advan tage   t ha t   t he   o r i en ta -  
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tion of the  axis  system  is  not  tied  to  the  initial  shell 

shape. 

2.7 Equations  for  Computation  of  Bending  Moments 

It has  already  been  noted  that  the  vanishing  of  the 

bending  moment dff arises  as  one  of  the  natural  boundary 
conditions  at  the  free  edge of the  spinning  shell.  However, 

it has  been  felt  appropriate  to  give  here  expressions  for 

the  bending  and  twisting  moments  in  the  shell  since  they 

do  not  arise  naturally  in  the  course  of  variational 

development. 

By  appropriate  integrations  of  the  strain  displacement 

relations  of  Eqs.  (2.5.1) we obtain  the  moment  resultants 

(moment  per  unit  length) 

In the  case of axisymmetric  deformations 

(2.7.1) 

these  reduce  to 
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(2.7.2) 
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CHAPTER  3 

THE  TRANSVERSE  VIBRATIONS OF A SPINNING 
MEMBRANE  DISK  WITH A FULLY  CLAMPED  HUB 

3.1  Introduction 

As pointed  out  in  Chapter 2, the  general  equations  for 

the  free  vibrations of spinning  shallow  spherical  shells 

contain  as  a  special  case,  when  the  shell  curvature  is 

zero,  the  equations  of  motion  for  the  vibrations  of  a  flat 

membrane  disk. It is  found  that  the  transverse  vibrations 

are  uncoupled  from  the  in-plane  vibrations.  The  case  of  in- 

plane  vibrations  was  studied  in  detail  by  Simmonds  [29]. 

Lamb  and  Southwell  [5],  Southwell [6], Simmonds [7, 113, 

Johnson  [8],  Bulkeley  and  Savage  [lo],  and  Eversman  [12], 

have  investigated  the  transverse  vibrations  of  spinning 

membrane  disks  for  several  hub  configurations  and  symmetry 

conditions.  None  of  these  authors  has  presented  results 

for  the  case  of  general  vibrations  of  a  disk  which  has  a  hub 

configuration  of  significance  for  applications,  as  discussed 

in  Chapter 1. It is  the  purpose  of  the  next  two  chapters 

to  study  the  transverse  vibrations  of  spinning  membrane 

disks  which  have  hubs  which  provide  various  degrees  of 

central  clamping.  Two  cases  are  studied  in  detail.  The 
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case  to  be  considered  in  this  chapter  corresponds  to  the 

case  of  a  fully  clamped, or built  in,  hub  which  constrains 

both  vertical  and  radial  displacements of  the disk. The 

case  to  be  considered  in  Chapter 4 is  that  of  a  "loosely 

clamped"  hub  which  prevents  vertical  displacement  but 

allows  radial  displacement.  These  two  hub  configurations 

are  the  extreme  cases  of  physically  significant  hub 

possibilities. The  intermediate  hub  configurations  have 

been  studied  for  axisymmetric  vibrations  by  Bulkeley  and 

Savage [lo] and  their  results  are  used  to  formulate  the 

equations  for  these  hub  conditions  for  the  asymmetric  case 

at  the  end  of  Chapter 4 .  The hub  configurations  are  shown 

in  Figure 5. 

3.2 The  Equilibrium  Stress  Distribution 

The  hub-disk  configuration  to  be  analyzed  is  shown  in 

Figure 6. The  differential  equation  which  governs  the 

equilibaium  stress  distribution  in  a  spinning  disk  was 

obtained  as  a  special  case  of  the  spinning  shallow  spherical 

shell.  .It  is  given  by  Eq. ( 2 . 4 . 2 )  and  is  repeated  here  for 

convenience 

(3.2.1) 
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In the  case  of  the fully clamped hub  the boundary  conditions 

to be  satisfied are 

where r = a i s  the  hub  radius andc=bis the  disk radius. 

Solutions  for  the equilibrium displacement and stress 

distributions  are  in the form [281 

(3.2.2) 

(3.2.3) 

( 3 . 2 . 4 )  

The boundary conditions  lead to  two simultaneous  equations 

for  the  constants C1 and C2 
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(3.2.5) 

By solving Eqs.  (3.2.5) and (3.2.6) we find 

(3.2.6) 

for C1 and C2 

(3.2.7) 

(3.2.8) 

For the equilibrium  stresses we  thus  have 

(3.2.9) 
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where 

(3.2.12) 

(3.2.13) 

3.3  The Govern ing   Di f fe ren t ia l   Equat ion   for  Free Vibra t ions  

The p a r t i a l   d i f f e r e n t i a l   e q u a t i o n  which  governs  the 

t r a n s v e r s e   v i b r a t i o n s  of a spinning membrane d i s k  i s  given 

by Eq. (2.6.4)  and is  repea ted   here  

(3.3.1) 
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Where vf and 5 are  the  equilibrium  stress  distributions 

given  by E q s .  (3.2.9) and (3.2.10). The  boundary  conditions 

to  be  satisfied  for  the  fully  clamped  hub  are 

e 

&a) = o 

Hence we seek  solutions of E q .  (3.3.1) which  vanish  at  the 

hub  and  are  finite  at  the  outer  edge. 

We  assume  a  solution of the  form 

which,  when  substituted  in Eq. (3.3.11, yields  the  following 

ordinary  differential  equation  for tn/cr) 

(3.3.2) 

where 

It  is  convenient  to  partially  non-dimensionalize E q .  (3.3.2) 

by  introducing  the  non-dimensional  radius  defined  by 
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If we introduce  this  into E q s .  (3.2.9) and (3.2.10) for 

the  stresses  we  obtain 

(3.3.3) 

(3.3.4) 

where 

With  the introduction of  the non-dimensional radius and 

E q s .  (3.3.3) and (3.3.4) into E q .  (3.3.2) there  results 

(3.3.6) 



Further  .simplification  can  be  obtained  by  introducing  the 

change of variable 

x =p* 
and  the  definition 

to  obtain 

(3.3.7) 

In  this  form  the  boundary  conditions  to  be  satisfied  are 

(3.3.8) 

3.4 Solutions of the  Differential  Equation 

The  basic  differential  equation  for  the  radial  dependence 

of  the  vibration  mode  shapes  is  given  by  Eq. (3.3.7) and 

supplemented  by  Eqs. (3.3.8) for the  boundary  conditions. 

Equation (3.3.7) is  of  the  Fuchsian  type  with  four  regular 

singular  points  at  x=O,  x=l, x=-& and  x=-. It can  be 

reduced by an  appropriate  transformation of the  dependent 

variable  to  Heun's  equation [32]. In the  particular  case 

2 
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at hand, direct  reduction to. H e m ' s  equation,  at  least 

by conventional  means,  does  not  appear  practical  since  it 

involves a transformation of the form 

in  which k is  complex  for.vibration  modes  with  more  than 

one  nodal  diameter,  Another transfo'rmation which  will 

lead to Heun's equation  has  been  used by Eversman [l.Z] in 

the  case  of  the  annular  membrane  with  free edges. In  this 

approach  the  transformation 

is made and then  a  transformation of the  form 

This  reduction is successful  in  that Heun's equation  can be 

obtained  with  real  values of k. However,  the  transformed 

geometry  of  the  singular  points must be considered. After 

the  change  of  independent  variables  there  will  be  singular 

points  at grot <= 1 , < = - %z , and <=e . The  region 

of physical  interest  lies  between <= 1 and 5 =('O/a)* . 
Since  the  distance  between < = (*a)* and cs is  less  than 

1  only  if (b$$*< 2 , and since  series  solutions  about <= \ 
can  be  guaranteed to converge  only  for o C S C 2  , only 
certain  disk  geometries  can be conveniently treated. 
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Because  of  these obs:ervati.ons and  restricti.ons, no  further 

reduction  of  the  basic  differential  equation is made. 

Solutions to' Eq. (3.3.8') can  be  obtained  in  the  form 

of  a  power  series  expansion  about  one of the  singular 

points [33]. The  singular  point  at  the  free  edge  is  the 

only  one  about  which  an  expansion  can be  made  which  can  be 

proved  to  converge  for the  entire  physical  region  for any 

disk  geometry.  Hence  it  is  appropriate to shift  this 

point  to  the  origin  with  the  transformation 

(3.4.1) 

where 

(3.4.2) 

With  this  transformation  the  singular  point  geometry  changes 

as follows : 



The  hub  radius,  originally  at = (x)*, transforms  to <= 1 .  
The  differential  equation transfo.rms to 

and the  boundary  conditions  become 

Solutions to Eq. (3.4.3) are  sought  in the form 

(3.4.4) 

(3.4.5) 

If  we  introduce  the  definitions 
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The  first of these  relations  is  the  indicia1  equation.  For 

arbitrary Co it follows  that 

or 
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This  yields  the two indicia1  exponents .of the solution 

P I  

?* = O 

With p s o t h e r e  exis ts  a s o l u t i o n  

(3.'4.6) 

wi th   t he  C, def ined  by 

where 
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( 3 . 4 . 8 )  

Since  the  characteristic  exponents of the  solution  are 

repeated,  only  one  solution of the  above  form  exists.  The 

second  independent  solution  is  known  to  have a logarithmic 

singularity  at < '-0 [33] and  is  discarded  to  satisfy  the 

boundary  condition  at  that  point. 

3.5 The  Eigenvalue  Problem 

The  boundary  condition  of  finiteness a t g = O  is 

satisfied  by  the  solution  given  by  Eqs. (3.4.6),  (3.4.7) 

and (3.4.8). The  eigenvalue  problem  is  that of finding 

values  of  the  parameter^^ , and  hence  the  natural  frequency 
9 , for  which a solution  of  this  form  will  satisfy  the 
boundary  condition M(f)=O with Co not  zero. By noting 

that 91*\,fm and $, are  functions  of f l z  we conclude  that 
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Hence  the  eigenvalue  equation  is 

(3.5.1) 

and we  seek  to  find  the  zeroes of the  transcendental  function 

(3.5.2) 

3.6 Numerical  Evaluation of the  Eigenvalues 

A digital  computer  program has been  written  to  find 

the  roots of the  eigenvalue  equation 

(3.6.1) 

- 



The  method  employ.ed  consists .of evaluating F(pz) for  a 

sequence of values  .of Pz until  a  change  in  sign  is 
noted.  When  the  change of sign  occurs,  and  the  presence of 

a  root  is  thus  indicated,  an  iteration  procedure  based  on 

the  method  of  secants [ 3 4 1  is  employed  to  obtain  the 

eigenvalue.  This  procedure  is  carried  out  for  a  given 

number of nodal  diameters s and  for  as  many  values  of 6 in 
0 4 (v'j) I as  specified.  For  specific  values  of s and 

(E) any  number of roots  can  be  calculated,  beginning  with 
the  smallest  and  proceeding  in  ascending  order. 

After  a  particular  eigenvalue  is  obtained,  the  eigen- 

function  can  be  evaluated,  by  program  option,  by  evaluating 

the  solution  for  the  known eigenvalue/', at  as  many  points 

in  the  interval 0 4  cL_ [ , or a G f 4 lo , as  necessary  for 
definition. 

The  above  numerical  technique  was  programined  for  the 

IBM  1620  Digital  Computer  at  Wichita  State  University. It 

was  found  that  accuracy  and  convergence  of  the  iteration 

scheme  could  not  be  maintained  without  the  use  of  double 

precision  arithmetic.  This,  coupled  with  the  inherent 

complexity of the  evaluation  and  iteration  calculations,  led 

to  computational  times  per  root  which  were  impractical  for 

production  computation  on  the  1620.  Through  the  kind 

cooperation  of  the  IBM  representative  access  was  made 

available  to  an  IBM  360,  Model 65, as  well  as  a  Model  75, 
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for  the purpose of. completing the n'umerical work. Computa- 

tion times.  'on  th.ese' machines  were  only  a  few  seconds .per 

ro'ot . 

3.7 The  Special  Case  of Symmetric.  Vibrations 

In  the  special  case of  symmetric  vibrations the 

parameter 5 z Q and Eq. (3.3.7) reduces to 

(3.7.1) 

where 

(3.7.2) 

If the  transformation 

is introduced  into Eq. (3.7.1) there  results the differential 

equation 
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(3.7.3) 

with  the  boundary  conditions 

(3.7.4) 

The  mathematical  problem  specified  by Eqs. (3.7.3) and 

(3.7.4) was  studied by Simmonds [ll] in  his  investigations 

of this case. 

It  is  found  in  this  case  that there  exists  one  solution 

of  the form 

00 

(3.7.5) 

where  the cn are  defined by 
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(3.7.6) 

The  second  solution  is  logarithmically  singular  at < a 0  

and  is  excluded  to  satisfy  the  boundary  condition  at  that 

point. 

The  eigenvalue  problem  is  that  of determining/'  such 

that 

(3.7.7) 

so that  the  second  boundary  condition  is  satisfied. As a 

means  of  verifying  the  results  of  the  general  eigenvalue 

problem  specified  by  Eq.  (3.6.1), a digital  computer  program 

for  the  special  case  of  symmetric  vibrations  was  developed. 

This  program  utilized  an  iteration  technique  similar  to  the 

one  discussed  in  Section  (3.6)  and  was  based on the eigen- 

value  problem  specified  by  Eq.  (3..  7.7) . The  results .of 
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these cal.culati.ons  show.ed  go.od  .correlati.on  w.ith .Simonds ’ 
results  .and  agre.ed  perfectly  with the re.sults for  the.  case 

s ~ r o  from  the  general  problem. 

3 . 8  T,he  Special  Case  With  One  Nodal  Diameter 

In  order  to  further  verify  the  analysis  it  was  decided 

to  also  treat  independently  the  case  of  vibrations  with  one 

nodal  diameter.  In  this  case  we  have 5 \L and  the  governing 

differential  equation  for  the  radial  mode  shapes  is 

(3.8.1) 

where 

(3.8.2) 

In  this  case  it is convenient to simplify  the  differential 

equation  by  introduction of the  change of variable 
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With  this  substitution Eq. (3.8.1) becomes 

+4(3 - p = ) x v  = 0 
\ 

(3.8.4) 

Equation (3.8.4) is a form of Heun's Differential  Equation 

[351 

As in  previous  cases, it is convenient to expand the 

solution about the point X =  I . This point is  shifted  to 

the  origin by the transformation 

(3.8.5) 

II " 
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The  differential  equation  becomes 

+ +(3-/7xr-cp)Y = 0 
(3.8.6) 

and the  corresponding  boundary  conditions,  deduced  from 

Eqs. (3.4.41, are 

(3.8.7) 

One  solution to Eq. (3.8.6) exists  in  the form 

(3.8.8) 
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where  the  recurrence  relation  for  the C is n 

(3.8.9) 

and 

(3.8.10) 

A second  solution  exists  which  is  logarithmically  singular 

at eta. The  boundary  condition  of  finiteness  at  the 

origin  requires  that  this  solution  be  discarded. 

At  this  point  it  is  interesting  to  note  the  simplifi- 

cation  introduced  by  the  transformation  to  Heun's  Equation. 

The  recurrence  relation  given  by Eqs. (3.8.9) contains  only 

three  terms,  but  it  would have contained  four  terms  if  the 

transformation  had  not  been  accomplished. A similar  result 

would  have  been  observed  in  the  general  case,  but  as 

previously  noted,  other  difficulties  precluded the transfor- 

mation. 
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In  thi.s case  the  eigenvalue  problem is one 'of 

determining /u'c such  that 

(3.8.11) 

The  roots  of  this  transcendental  equation  were  found  by  a 

method  similar  to  the  ones  employed  for  the  symmetric  and 

general  cases.  The  results  were  compared  with  those 

obtained  from  the  general  program  for  the  case S r  I and 

were  found  to  be  in  complete  agreement. 

3.9 Results 

The  numerical  procedures  discussed  in  the  previous 

section  were  used to calculate  the  first  four  eigenvalues, 

m z o t o  a=3, for  cases  of  from  zero to three  nodal  diameters, 

grot0 S = 3 .  The  results of these  calculations  are  plotted 

in  Fig. 7 as  a  function of the  ratio  of  the  hub  radius  to 

the  disk  radius. 

The  general  trend  is  for  the  increase of/ , and 
hence  the  vibration  frequency,  with  an  increase  in  the  hub 

2 

size.  This  is  reasonable  from  a  physical  viewpoint  since 

increasing  the  hub  radius  would  appear  to  stiffen  the 

system. 

An  exception  to  this  observation  occurs  for  the  higher 

modes  corresponding  to  a  given  number  of  nodal  circles n. 
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It is  observed,  for  example,  that  for Vl=o and 5 s -  and 3 

that  there  is  an  initial  reduction o f A 7  with  increasing 

& . It is  anticipated  that  this  trend  will  appear 

whenever  the  number  of  nodal  diameters  is  substantially 

larger  than  the  number  of  nodal  circles.  This  trend  can  be 

explained  in  terms  of  the  dependence  of  the  local  disk 

stiffness  on  the  nodal  geometry.  The  equilibrium  stresses 

in  the  disk  are  given  by 

(3.9.1) 

(3.9.2) 

where 

(3.9.3) 

We  note  that 
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(3.9.4) 

(3.9.5) 

so that  for o< C l  the  local  radial  stress  increases  with 

increasing & while  the  tangential  stress  decreases  with 
increasing 6 . Since 6 depends  directly  on (2) the  same 

can  be  said  about  increasing or decreasing  the  ratio  of  the 

hub  radius  to  the  disk  radius. 

P 

If  there  are  substantially  more  nodal  diameters  than 

nodal  circles  the  local  membrane  stiffness  will  depend 

predominantly  more  on  the  tangential  stress  than  on  the 

radial  stress  for  small (E) and  will  tend  to  decrease  with 
increasing (-) up  to  a  limiting  value of (E).  It would  be 

expected  that  the  more  the  number of nodal  diameters  exceeds 

the  number  of  nodal  circles,  the  more  pronounced  this 

effect  would  be  and  the  larger  would  be  the  range of (E) 
over  which  it  is  observed. 

a  a 
b 

If,  on the  other  hand,  the  nodal  geometry  tends  to 

make ec predominant  in  governing  the  local  stiffness,  then 
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the  trend of increasing f 1 2  with  increasing (E) is expected. a 

A second  interesting  feature  occurs  for (E)  near 
unity  where  for  the  the  higher  values of n there  is  little 

variation  of /c./' with s. This  can  be  explained  by  physically 

reasoning  that  for  large n and  large (E) the  stiffness is 
governed  almost  completely  by  the  nodal  circle  geometry  since 

they  are  very  closely  spaced  while  the  nodal  diameters  are 

widely  spaced  in  this  region.  For  large s it  would  be 

expected  that  more  variation  with s would  be  seen. 
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CHAPTER 4 

THE  TRANSVERSE  VIBRATIONS OF A SPINNING 
ANNULAR  MEMBRANE  DISK  WITH  A  FRICTIONLESS  HUB 

4.1 Introduction 

Treated  in  this  chapter  is  the  problem  of  the  transverse 

vibrations of a  spinning  annular  membrane  disk  with  a 

frictionless  or  loosely  clamped  hub.  By  this  it  is  meant 

that  the  hub  does  not  restrain  in-plane  motions  of  the 

disk  but  prevents  transverse  displacements.  From  a  physical 

standpoint  this  case is similar  to  the  case  discussed  and 

solved by Simmonds [ 3 6 ] ,  except  here  the  disk  is  annular 

rather  than  solid, so that  the  presence of a  hub  is  on  a 

more  physically  realistic  basis.  The  author  was  assisted 

by  Mr.  Thomas  Gilley [ 3 7 ]  in  the  following  analysis. 

4 . 2  The  Equilibrium  Stress  Distribution 

The  differential  equation  and  boundary  conditions 

governing  the  equilibrium  stress  distribution  in  the  case of 

a loosely  clamped  hub  are 
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where a and b are  the  inner  and  outer  annulus  radii. 

Solutions to the  differential  equation  are  given by E q s .  

(3.2.2)  (3.2.3) and (3.2.4). By  employing  the two boundary 

conditions  the  two  constants, C1 and C2, can  be  obtained 

and  the  solutions  for  the  stresses  are  found  to  be [28] 

(4.2.2) 

In a partly  non-dimensional  form,  with 

r = p b  

Eqs. (4.2.2) and (4.2.3) can  be  written 

(4.2.4) 

(4.2.5) 
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where 

(4 .2 .7)  

i s  the   annu lus   r ad ius   r a t io .  I t  i s  i n t e r e s t i n g  t o  note  

t h e   s i m i l a r i t y  between  the  functional  form  of  the  above 

stresses with  those  given by Eqs. (3.3.3)  and  (3.3.41, 

keep ing   i n   mind ,   however ,   t he   d i f f e rence   i n   t he   de f in i t i on  

of 6 . 
4.3 The Govern ing   Di f fe ren t ia l   Equat ion   for   Free   Vibra t ions  

By s u b s t i t u t i n g   t h e  stress d i s t r ibu t ion   g iven   by  

Eqs. ( 4 . 2 . 6 )  and ( 4 . 2 . 7 )  i n t o   t h e   g o v e r n i n g   d i f f e r e n t i a l  

equa t ion   fo r   t r ansve r se   v ib ra t ions ,   g iven   by  Eq. ( 2 . 6 . 4 ) ,  

s e p a r a t i n g   v a r i a b l e s ,  and  using  the  non-dimensional  radius 

defined  by Eq. ( 4 . 2 . 4 ) ,  t h e r e  i s  obta ined  for  t h e   r a d i a l  

mode shapes i n  t h e   p r e s e n t  case 
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With the  change of v a r i a b l e  

(4.3.2) 

Eq.  (4.3.1) becomes 

where 

(4.3.4) 

The boundary  conditions  imposed  by  the hub  on t h e  

t r a n s v e r s e   v i b r a t i o n s  of t h e   d i s k   r e q u i r e  
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where V=C is the  radius  of  the  hub.  In  terms  of  the 

variable x these  conditions  become 

(4.3.5) 

NCr) = F W I T E  

(4.3.6) 

where E x  = cy&z is  the  square  of  the  ratio  of  the  hub 
radius  to  the  disk  radius. 

4.4 Solutions of the  Differential  Equation 

The  observations  of  Section (3.4) concerning  the 

difficulties  of  reducing  the  governing  differential  equation 

to  Heun's  equation  are  also  pertinent  for  the  present  case. 

For  this  reason,  Eq. (4.3.3) will  be  treated  without  further 

reduction. 

An  expansion  in  a  power  series  about  the  singular  point 

at X = l  is  facilitated  if we  shift  this  point  to  the  origin 
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with  the transformation 

(4.4.1) 

where 

( 4 . 4 . 2 )  

Accordingly,  the  singular point geometry shifts as follows: 

The hub radius, originally at % = €  , shifts to<=/. By 

introducing  this transformation  into the differential 

equation we obtain 

2 

( 4 . 4 . 3 )  

-81- 



r 

The boundary  conditions become 

wco = 0 
( 4 . 4 . 4 )  

I t  is  found t h a t  there ex i s t s   one   so lu t ion   o f  t he  form 

( 4 . 4 . 5 )  

where t h e  Cn a re   def ined  by t h e  r e c u r r e n c e   r e l a t i o n  

a,c, + 6,c, = 0 
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A second  independent  solution  of  the  form of Eq. 

(4.4.5)  does not exist  because  the  characteristic  exponents 

of  the  solution  are  repeated.  The  second  independent 

solution  is  logarithmically  singular  at <soand hence i s  

excluded  to  satisfy  the  boundary  condition of finiteness 

at that  point. 

4.5 The  Eigenvalue  Problem 

The  power  series  solution  given  by  Eq.  (4.4.5)  and 

supplemented  by  Eqs.  (4.4.6)  and  (4.4.7)  satisfies  the 

condition  of  finiteness  at < s o  . The  boundary  condition 

of  no  displacement  at  the  hub, c3. I , will  be  satisfied 
if 

n=0 
(4.5.1) 

Equation  (4.5.1) , with  the cnpz) defined  by  the  recurrence 
relation  in  Eqs.  (4.4.6)  and  (4.4.71,  Constitutes  a 

transcendental  equation  defining  the  values  of /u* for 
which vr/cl> vanishes  with Co not  zero.  Hence  the  eigenvalue 

problem  is  that of finding  the  zeros  of  the  function 

(4.5.2) 
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A numerical   technique similar t o  the -one   descr ibed   in  

Sect ion  (3 .6)  w a s  used t o  n 'umer ica l ly   eva lua te   the  roots 

of Eq. (4.5.1).  The p resen t  case has the  added  complication 

t h a t   i n   a d d i t i o n  t o  nodal  geometry,  defined by i n t e g e r  

values  of s, w e  mus t   cons ide r   va r i a t ions   i n   bo th  the r a t io  

of the  hub r ad ius  t o  t h e  d i s k  r a d i u s ,  , and t h e  annulus 

r ad ius  ra t io ,  d . 
4.6 The Spec ia l  Cases of  Symmetric  Vibrations  and  Vibrations 

With One Nodal  Diameter 

As i n  the  case of t h e  f u l l y  clamped hub, t h e r e   a r e  two 

s p e c i a l  cases which reduce the complexity of the  governing 

d i f f e r e n t i a l   e q u a t i o n  and  can be used  independently  of  the 

general  development for  computational  purposes or f o r  

v e r i f i c a t i o n  of results computed from the   gene ra l  case. 

The case of symmetr ic   vibrat ions,  w i t h  5 % ~ ~  leads 

t o  the d i f f e r e n t i a l   e q u a t i o n  

where 

By in t roducing  the  change of v a r i a b l e  
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we o b t a i n   f o r   t h e   d i f f e r e n t i a l   e q u a t i o n   a n d   b o u n d a r y   c o n d i t i o n s  

(4.6.2) 

(4.6.3) 

I t  i s  f o u n d   t h a t   t h e   s o l u t i o n   s a t i s f y i n g  t h e  condi t ion   o f  

f i n i t e n e s s   a t  the  o r i g i n  i s  of t h e  form 

.n"O 

wi th  

(4.6.5) 

The eigenvalue  problem is t h a t  of determining M* s u c h   t h a t  
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( 4 . 6 . 6 )  

I n  the case of  one  nodal diameter, t h e  d i f f e r e n t i a l  

equat ion i s  

(4.6.7) 

With t h e  change of dependent  variab'le 

\FJ = % % ( x )  

and the  subsequent   change  of   independent   var iable  

( 4 . 6 . 8 )  

t he  d i f f e r e n t i a l   e q u a t i o n  becomes 
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and the  boundary  condi t ions become 

V(0) = F\d\\TE 

(4 .6.9)  

( 4 . 6 . 1 0 )  

The s o l u t i o n  of Eq. ( 4 . 6 . 9 ) ,  a form of Heun's  equation,  which 

i s  f i n i t e   a t   t h e   o r i g i n  i s  

* =0 

w i t h   t h e  Cn defined  by 

( 4 . 6 . 1 1 )  

where 
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(4.6.13) 

I n  t h i s  case the eigenvalue  problem is  t h a t  of  determining 

s u c h   t h a t  

( 4 . 6 . 1 4 )  

Numer ica l   resu l t s   for  t h e  e igenva lues   fo r  these s p e c i a l  

cases were obtained  using methods similar t o  those descr ibed 

i n   S e c t i o n   ( 3 . 6 ) .  These r e s u l t s  were compared w i t h  r e s u l t s  

obtained from t h e  general  program i n  t h e  s p e c i a l   c a s e s  S - o  

and s=l and  complete  agreement was found. 

4.7 Resul t s  

The three Fortran  computer  programs referred t o   i n   t h i s  

chap te r  were used t o  compute t h e  first four   e igenvalues , f i :o  

t o  3 , of the frequency  parameter,", f o r   v a l u e s   o f  t h e  

annu lus   r ad ius   r a t io ,  b , from 0 . 1  t o  0 .8 ,  f o r   va lues   o f  

t h e  hub t o  d i sk  r a d i u s   r a t i o ,  6 , from 0 . 2  t o  0.9,  and f o r  

values  of s from 0 ,  t o  3 .  The r e s u l t i n g  data f r o m  these 
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c a l c u l a t i o n s  w e r e  p lo t ted   and  are p r e s e n t e d   i n   F i g u r e s  8 

through 19 .  It shou ld   be   no ted   t ha t   no   ca l cu la t ions  w e r e  

c a r r i e d   o u t   f o r  cases i n  which d w a s  smaller than  or  equal  

t o  & . T h i s  w a s  considered a phys ica l ly   un rea l i zab le  

case s i n c e  it means t h a t   t h e   c e n t e r   h o l e   i n   t h e  membrane 

i s  l a r g e r   t h a n  or  equal  t o  t h e  hub rad ius .  For t h i s   r e a s o n  

€ w a s  a r b i t r a r i l y   p i c k e d  t o  be a t  least  1 0  percent  

g r e a t e r   t h a n  6 . The limits on € and 6 were governed 

somewhat by  considerat ions of p r a c t i c a l i t y   i n   t h e   c o m p u t e r  

programs.  For  values  of d less than 0 .3  the  convergence 

o f   t he  power series was extremely s l o w  and  required  very 

long  computer  runs.  For  values of 6 g r e a t e r   t h a n  0.9,  

t h e   f r a c t i o n  - becomes l a r g e   a n d   l e a d s   t o   p o s s i b l e  

c o m p u t a t i o n a l   d i f f i c u l t i e s .  

I 

I - € =  

The p l o t t e d   d a t a ,   F i g u r e s  8 through 1 9 ,  show t h a t  i f  

the  parameters  6 , G , and s a r e   h e l d  c o n s t a n t  t h e   n a t u r a l  

frequency of v i b r a t i o n   i n c r e a s e s   a s  n increases .   This  

behavior i s  p red ic t ab le   f rom  the   gene ra l   t heo ry  of Sturm- 

Liouville  eigenvalue  problems. 

The p l o t s   a l s o  show t h a t   t h e   f r e q u e n c y  of v i b r a t i o n  i s  

i n c r e a s e d   a s   t h e   r a t i o  of hub r a d i u s   t o   d i s k   r a d i u s ,  E ,  is  

increased  and b , s ,  and n are he ld   cons t an t .  The increase 

i n   t h e  s i z e  of   the  hub with  constant  nodal  geometry  and  disk 

s i z e   c a u s e s  an o v e r a l l   s t i f f e n i n g  of t h e   d i s k ,   r a i s i n g   t h e  

na tu ra l   f r equenc ie s  of v i b r a t i o n .  
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In   gene ra l ,  the  frequency  d.ecreases as t h e   a n n u l u s  

r a d i u s   r a t i o ,  6 , is  increased  and s ,  n,  and are constant .  

The e x c e p t i o n   f o r   t h i s   r u l e  i s  found i n  the case where the 

number of  nodal diameters i s  much g r e a t e r   t h a n  the number of 

nodal circles. For t h i s  case, the frequency  increases  

when 6 is  increased.  This  observa t ion  was also made and 

explained by  Eversman [ 1 2 ]  f o r  the case of t h e  annular  

e las t ic  membrane w i t h  f ree   edges .  

The phenomenon i s  shown t o  be due t o  the change i n  the 

l o c a l   s t i f f n e s s   i n  the membrane w i t h  changes i n  the nodal 

geometry. The stresses w e r e  known t o  be due  only  to  the 

c e n t r i p e t a l   a c c e l e r a t i o n s   i n d u c e d  by t h e  r o t a t i o n .  The 

stresses are given by Eqs. (4 .2 .5 )  and ( 4 . 2 . 6 ) .  These 

equat ions are repeated here for  convenience: 

We n o t e   t h a t  
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so t h a t  for  0 5  61 t h e   r a d i a l  stres's decreases   wi th  

inc reas ing  d w h i l e   t h e   t a n g e n t i a l  stress inc reases   w i th  

inc reas ing  & . 

P 

For   t he  case when t h e  number of  nodal diameters is 

s u b s t a n t i a l l y   g r e a t e r   t h a n   t h e  number of  nodal c i rc les  t h e  

t a n g e n t i a l  stresses are   predominant ly  more impor t an t   i n  

p r o v i d i n g   s t i f f n e s s   a n d   t h e   l o c a l   s t i f f n e s s   i n   t h e  membrane 

w i l l  increase wi th   increas ing  6 . The i n c r e a s e d   s t i f f n e s s  

causes   increased   f requency   of   v ibra t ion .   I f   the  number of 

nodal circles i s  s u b s t a n t i a l l y   g r e a t e r   t h a n   t h e  number of 

noda l   d i ame te r s   t he   r ad ia l  stresses are  dominant  and  the 

na tura l   f requency  tends to   dec rease   w i th   i nc reas ing  6 [12]. 

I f   F igu res  11, 1 4 ,  and 1 7  are s t u d i e d   b r i e f l y  it w i l l  be 

no ted   t ha t   t he   f r equency   o f   v ib ra t ion  is ,  i n   f a c t ,   i n f l u e n c e d  

less by inc reas ing  or  decreas ing   the  hub r a d i u s   i n   t h e  

cases where  the number of  nodal diameters is g r e a t e r   t h a n  

t h e  number of  nodal circles. This   observat ion  can  be 

explained. The l a r g e r  number of  nodal  diameters  causes 

s u f f i c i e n t   r e s t r a i n t  on t h e   d e f l e c t i o n   o f   t h e  membrane i n  

the   p roximi ty  of t h e   i n n e r   e d g e   t h a t   t h e   i n c r e a s e  or  decrease 
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in the  hub  size  has  little  effect on the  stiffness .of the 

membrane or on  the  frequency  of  vibration. 

4.8  Intermediate  Cases of Central  Clamping 

The  cases  of  full  clamping  and  frictionless  clamping 

represent  the  extremes of physically  significant  hub 

configurations.  The  fully  clamped  case  corresponds  to  a 

disk  built  into  the  hub or shaft. It can  be  viewed  as 

being  equivalent to a  disk  clamped  between  collars  with 

sufficient  clamping  pressure  to  prevent  any  radial 

deformation  of  the  disk  in  the  region of the  hub.  On  the 

other  extreme is the  case  of  frictionless  clamping  in  which 

there  is no clamping  pressure  (alternatively, no hub-disk 

interface  friction)  and  hence  no  constraint  on  the  radial 

disk  deformation  in  the  hub  region.  Between  these  two 

configurations  are  the  cases of intermediate  clamping  in 

which  there  is  sufficient  clamping  pressure  and  hub-disk 

interface  friction  to  prevent  radial  displacements  of  disk 

elements  over  a  portion  of  the  hub  region,  but  not  over  the 

entire  region.  These  cases  have  been  studied  in  detail 

in  the  axisymmetric  case  by  Bulkeley  and  Savage [lo] and 

the  extension  to  asymmetric  vibrations  constitutes  only 

minor  modifications of the  procedures  previously  established 

in  this  report. 

Bulkeley  and  Savage  show  that  the  form of the  stress 

distribution  in  the  spinning  disk  depends  explicitly  on  the 
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clamping.  conditions. In particular,  for  a  disk of thickness 

h clamped by a  hub  of  radius  c  with  clamping  pressure P 

and Coulomb friction  coefficient/,  the  radius  r=g  which 

limits  the  region  of  zero  radial  displacement  is  given by 

with 

For  values of P4 there  is no radial  displacement  while  for 

SP< C the  clamping  pressure  is  insufficient  to  prevent 
? 

a 
slippage  and  radial  displacement. 

If the  radius of effective  clamping  is  between  the 

inner  radius of the  disk  and  the  radius of the  hub, 

a 5 7 < C , the  stress  distribution  is  given  by 

(4.8.1) 

where 
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U (4.8.3) 

and 

a = inner  annulus  radius 

b = outer  disk  radius 

c = hub  radius 

g = radius  at  which  clamping  pressure  and  disk-hub 
interface  friction  become  insufficient  to  prevent 
radial  displacement  of  disk  elements 

,U= Coulomb  friction  at  disk-hub  interface 

P = clamping  pressure 

h = disk  thickness 

It is  also  possible  that  the  effective  clamping  radius 

will be  less  than  the  inner  disk  radius.  If  this  occurs 

there  will  be  slippage  over  the  entire  hub-disk  interface. 

This  will  occur  if 

and  the  stress  distribution will be 
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( 4 . 8 . 5 )  

where 

( 4 . 8 . 6 )  

It is  recalled  that  in  the  case  of  frictionless 

clamping the  stress  distribution is given by 

( 4 . 8 . 7 )  

( 4 . 8 . 8 )  

where 
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Hence, i f  the computer  program f o r  the :loosely  clamped case 

is  modified t o  r ep lace  

and the i n p u t  t o  compute E i s  provided, t h e  v i b r a t i o n  

problem for  the  in te rmedia te  case w i t h  the e f f ec t ive   c l amping  

r ad ius  less than  t h e  inner   annulus   rad ius   can   be   ana lyzed  

by u s i n g   i n  Eq. (4.8.9)  and the case when the  clamping 

r ad ius  i s  between the inner   annulus   radius   and t h e  hub 

rad ius   can  be analyzed  by  using 6, , i n  Eq. (4.8.9) . 
Note t h a t   i n  t he  case P=O w e  f i n d  

Since w e  r ep lace  

w e  f i n d   t h a t   s p a n d  S are proper ly   def ined   for  t h e  loose ly  

clamped  case. 
e 

I n  t h e  case g=c w e  have 
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and we replace 

By  referring to Eqs. (3.2.9) and (3.2.10) and  accounting 

for  the  pertinent  definition of 6 for  this  case  given  by 
Eq. (3.3.5) [note  that  the hub radius  in  this  equation 

is  a  instead  of cl we see  that C& and Se will  be  properly 

defined  for  the  completely  clamped  case. 

z 

Hence  it  is  concluded  that  the  complete  range  of  hub 

conditions  between,  and  including,  the  extreme  cases  can 

be  analyzed  by  a  simple  modification  of  the  basic  analysis 

for  the  loosely  clamped  case. 

-9 7-  



CHAPTER 5 

THE  EQUILIBRIUM  STRESS  AND  DISPLACEMENT 
DISTRIBUTION  IN  A  SPINNING  SHALLOW 

SPHERICAL  SHELL 

5.1 Introduction 

In Chapter 2 it  was  shown  that  the  equations  of  motion 

for  the  small  transverse  vibrations of a  spinning  shallow 

spherical  shell  about  its  equilibrium  configuration  require 

the  knowledge  of  the  equilibrium  stresses  and  displacements. 

It is  the  purpose  of  this  chapter to present  methods  for 

the  calculation  of  the  equilibrium  conditions  for  the  cases 

of  a  freely  spinning  shell  and  a  shell  with  central  clamping. 

The  linear  and  nonlinear  theories  of  Reissner [30, 13, 141 

are  employed  for  this  purpose. 

In  addition  to  providing  calculation  schemes,  an 

evaluation  is  made  regarding  the  adequacy  of  the  use  of 

membrane  shell  theory  for  the  determination  of  the  stresses 

and  displacements.  This  was  prompted  by  the  paper  of 

Johnson [ 8 1  in  which  was  treated  the  problem  of  transverse 

vibrations  of  spinning  shallow  spherical  membrane  shells. 

In his  analysis  it  is  found  that  as  the  curvature  of  the 

undeformed  shell is reduced,  that  is  as  the  shell  approaches 
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a  flat  plate,  the  stress.  and  displacement  distribution,  and 

hence  the  vibration  natural  frequencies,  do  not  approach 

those of the  flat  plate.  It  is  shown  in  the  present  analysis 

that  this  anomaly  is  due to  the  membrane  assumption  and  that 

an  extremely  shallow  spinning  shell  theory  (approaching  a 

flat  plate)  must  include  bending  effects  if  a  continuous 

transition  from  shell  results  to  plate  or  flat  membrane 

results  is  to  be  obtained.  Furthermore,  the  inclusion  of 

bending  effects  permits  the  specification  of  physically 

significant  boundary  conditions  at  the  hub  and  outer  edge. 

5 . 2  The  Equilibrium  Equations  for  the  Linear  Theory 

Equations ( 2 . 4 . 4 )  and ( 2 . 4 . 5 )  derived  from  a  variational 

principle,  correspond  to  Reissner’s  linear  results 1301 in 

the  axisymmetric  case  with  surface  loading  due  to  the 

centrifugal  force  effects. By introducing  a  stress  function 

such  that 

where 

and  by  utilizing  the  compatibility  equation  of Eq. ( 2 . 4 . 7 )  
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we can   ob ta in  t w o  s imul t aneo .us   o rd ina ry   d i f f e ren t i a l  

equat ions   . in   the   def lec t ion   and  stress func t ion  

(5.2.1) 

(5.2.2) 

where 

and 

(3 = m t  = mass p e r   u n i t   s u r f a c e  area 

The boundary  condi t ions  for  the  case  of the  f r e e l y  

spinning shell are t h a t  t h e  stresses and  displacements be 

f i n i t e  a t  t h e  po in t  r = O  and t h a t  t h e   c o n d i t i o n s   a t   t h e  

f r ee   edge ,  r=b, a r e  
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(5.2.3) 

If there  is a fully clamped  central hub of radius a 

we must add to the  free  edge boundary conditions of Eqs. 

(5.2.3) the  hub  conditions 

(5.2.4) 

5.3 The Equilibrium  Equations  for the Nonlinear  Theory 

The nonlinear  theory of Reissner  allows  for the 

possibility of finite  rotations  of  shell elements. As 

noted in Eqs. ( 2 . 4 . 6 )  and (2.4.91, the equilibrium  equations 

are 
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(5.3.1) 

(5.3.2) 

where 

The same boundary   condi t ions   apply   in   th i s  case a s  do 

i n   t h e   l i n e a r   c a s e ,   e x c e p t   t h a t   t h e  ver t ica l  edge   reac t ion  

(Kirchoff   condi t ion)  i s  a u t o m a t i c a l l y   s a t i s f i e d  and s p e c i f i -  

ca t ion   of  *is not   requi red   un less  it i s  d e s i r e d   t o  

ob ta in  by i n t e g r a t i o n .  

5.4 Stresses   and  Displacements   in   the  Freely  Spinning  Shel l - -  

Linear  Theory 

B e c a u s e   o f   t h e   l a c k   o f   u t i l i t y   f o r   p h y s i c a l l y   s i g n i f i -  

can t   v ibra t ion   problems,   the   case  o f  t h e   f r e e l y   s p i n n i n g  

s h e l l   w i t h  no  hub  has  been  treated  only by t h e   l i n e a r  

a method excep t   fo r   t he   boundary   l aye r   ana lys i s .  The major 
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result of this  analysis  is the demonstration of the  continuous 

transition  of  the  shell  solutions  to  the  flat  plate  solutions 

when  the  curvature  approaches  zero. 

By following  the  method of Reissner  [131, Eqs. (5.2.1) 

and  (5.2.2)  can  be  reduced to a single  differential  equation 

(5.4.1) 

where 

and 

Reissner  obtains  the  solution  to  the  homogeneous  equation 

corresponding  to Eq. (5.4.1)  in  the form 

(5.4.2) 
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Of  the  eight  constants  in E q s .  (5.4.2)  and  (5.4.31,  Reissner 

shows  that C8 can  be  excluded  since  only  derivatives  of F 

are  significant  and  that C, must  be  excluded  to  preclude  the 

possibility  of  circumferential  displacement. 

A particular  solution  to Eq. (5.4.1) which  has  the 

proper  limiting  behavior  as  the  radius of curvature  becomes 

infinite  can  be  obtained  in  the  form 

By substituting E q .  (5.4.4)  into E q .  (5.4.11,  solving  for 

the  unknown  coefficients,  and  equating  real  and  imaginary 

parts,  there  .results  for the  particular  solutions 

(5.4.5) 
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(5.4.6) 

The  general  solution  to Eq. (5.4.1) is the  sum of  the 

homogeneous solution, given by Eqs. (5.4.2) and (5.4.31, 

and the particular solution: 

The  constants  in  these  solutions are to  be determined  from 

the boundary conditions. We  choose  to  exclude  the  possibility 

of a rigid body vertical displacement by setting cs = -  c, . 
The Kirchoff  condition 
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leads  directly to  the  conclusion  that C6=0. The  requirement 

of finite  stresses  and  displacements at the  origin  is violated 

if c3 and c4 are  not zero, since kef7 is  singular at f = ~ .  

Hence Eqs. (5.4.7) and (5.4.8) simplify to 

f 

(5.4.9) 

The  two  constants C1 and C2 can  be 

remaining two boundary  conditions 

determined  from the 
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These  two  conditions  lead  to  two  simultaneous  equations 

in  the  unknowns  C1  and  C2.  Before  writing  these  two  equations, 

note  that  at  r=b we have 

T= 6 4 
c- 

From Eq. (2.2.1) with z=O at r=b we find  that 

By solving  for R in  terms of h and  be we obtain 

Within  the  scope of shallow  shell  theory  this  becomes 

Hence we can  .write 
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(5.4.11) 

With  this  observation  we  write  the  two  equations  in C and 1 

where 

and  differentiations  are  denoted  in  the  following way: 

-108- 



If we introduce  the notation 

we obtain  the  set of equations 

which have  the so lu t ion  
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A s l i g h t l y  more compact form of the s o l u t i o n  can be 

had i f  w e  n o t e   t h a t  

We write these as 

where 
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With t h e s e   d e f i n i t i o n s   t h e   c o n s t a n t s   c a n  be w r i t t e n  

(5.4.12) 

(5.4.13) 

where 

(5.4.14) 

Equations (5.4'.9) and (5.4.10) t oge the r  w i t h  t h e  
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constants.  defined  by Eqs: (5.4..12),  (5.4.13)’,  (5..4..14) , 
and  (5.4.15),  completely  specify the  stress  and  displacement 

distribution in the  freely  spinning  shell.  The  stresses 

can  be  written  explicitly by noting  that  sinae 

we can  write,  using  Eqs.  (5.4.9),  (5.4.121,  and  (5.4.13), 

(5.4.16) 

The  normal  displacement  can  be  obtained by substituting 

Eqs. (5.4.12)  and  (5.4.13) in Eq.  (5.4.9) : 
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Although  not  required  for  the  dynamic problem, the 

calculation  of  the  shell  bending  moments  can  be  accomplished 

by noting  that  they  are  defined by 

By performing the  appropriate  operations  using Eq. (5.4.18) 

we obtain  for  the  bending  moments 
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5.5 The Limiting  Case of the Freely Spinning  Flat Disk 

Consider the  case  when  the  radius  of  curvature 

becomes very large, or, alternatively when  the parameter , 
defined by 

where h/t is the  ratio of the  shell  rise  to  the  shell 

thickness, is very small. It  can be verified  that for 

small X 
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Furthermore,  for small x 
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By r e f e r r i n g   t o  Eqs. (5.4.16)  and  (5.4.171, it can 

t h u s   b e   s e e n   t h a t  

(5.5.1) 

Equat ions   (5 .4 .21)   and   (5 .4 .22)   agree   wi th   the   resu l t s  of 

Timoshenko  and  Goodier  [281 f o r   t h e  case of' t h e   f r e e l y  

spinning  disk.   Furthermore,  by r e f e r r i n g   t o  Eqs. (5.4.18),  

(5.  4.D),  and  (5.4.20) it c a n   e a s i l y  be v e r i f i e d   t h a t  
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(5.5.3) 

R-, QD 

(5.5.4) 

(5.5.5) 

Hence, it  is  seen  that  the  bending  theory  provides  displace- 

ment  and  stress  distributions  which  show  a  continuous 

transition  to  the  flat  disk  results  as x "eo and R-". 

5.6 Computational  Results  for  the  Freely  Spinning  Shell 

The  solutions  for  the  direct  stresses  and  normal 

displacement  have  been  computed  by  direct  numerical  evalua- 

tion of Eqs. (5.4.16),  (5.4.17) and (5.4.18) . In addition, 

the  outer  surface  bending  stresses,  defined  by 
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= aee .L 

have  been  calculated  by 

t 
(5.6.2) 

direct  evaluation of E q s .  (5.4.19) 

and  (5.4.20). It should  be  noted  that E q s .  (5.6.1)  and 

(5.6.2)  are  somewhat  unconventional  in  that  they  have  the 

dimensions  of  force  per  unit  length  as  do  the  present 

conventional  definitions  of  the  direct  stresses.  This 

definition  was  adopted  to  allow  a  direct  comparison  of  the 

bending  stresses  with  the  direct  stresses. 

To furnish  a  basis  for  comparison,  the  corresponding 

results  have  been  derived  by  using  linear  membrane  theory. 

In the  membrane  case E q s .  (2.4.4)  and  (2.4.5)  become 

(5.6.3) 

'L 

(5.6.4) 

The  membrane  solutions  can  readily  be  verified to be 
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(5.6.5) 

\ 

(5.6.6) 

(5.6.7) 

(5.6.8) 

(5.6.9) 

The  results of the bending  theory  computations  are 

shown  in  Figures 20 through 24. We  have used  several  values 

of x varying  from  the  nearly  flat  configuration  to  the 

shell  with  a fairly  substantial  curvature  (or  alternatively, 
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very   t h in )  . The r e s u l t s  shown were obta ined  with t-0.2.0 

However, Poisson ' s  r a t i o  does not :cont r ibu te   s t r .ongly  t o  

t h e   c h a r a c t e r  of the  so lu t ions .   These   r e su l t s   can   r ead i ly  

be  compared t o  t h e  membrane theory  of Eqs. (5.6.5) through 

(5.6.9) 

The t r a n s i t i o n  w i t h  decreasing x from a s o l u t i o n  

which i s  ve ry   c lose  t o  the membrane r e s u l t s  t o  one  which 

p r a c t i c a l l y   c o i n c i d e s  w i t h  the f l a t   p l a t e   t h e o r y  i s  c l e a r l y  

evident .  I t  i s  n o t e d   t h a t   f o r   h i g h  h the   bending  stresses 

are small and show little v a r i a t i o n   e x c e p t   n e a r  t h e  edge. 

By r e f e r r i n g  t o  Eqs. (5.6.8) and (5.6.9) it can  be  seen 

t h a t  membrane theory   accura te ly   p red ic t s   the   magni tude   o f  

t h e  bending stress i n  t h e  i n t e r i o r  of the d i s k  bu t ,  of course ,  

f a i l s  t o  do so a t  t h e  edge   s ince  it i s  not   accounted   for  

i n  t h e  boundary  conditions.  With decreas ing  x t h e  bending 

stresses f i rs t  inc rease ,   t hen   dec rease  as the th i ckness ,  

o r   b e n d i n g ,   e f f e c t  becomes predominant  and  then the  decrease  

i n   i n i t i a l   c u r v a t u r e   d o m i n a t e s .  

The direct stresses show a similar t r end   w i th   dec reas ing  

h . For high x the d i r e c t  radial  stress  is near ly  zero 

w h i l e  t h e   t a n g e n t i a l  stress d i s p l a y s  the p a r a b o l i c   c h a r a c t e r  

p red ic t ed  by the membrane theory of Eq. (5 .6 .6 )  . With 

decreasing h w e  see a monotonic t r a n s i t i o n   o f  t h e  membrane 

t y p e   s o l u t i o n  t o  the  f l a t   p l a t e   s o l u t i o n .  I t  i s  p a r t i c u l a r l y  

i n t e r e s t i n g   t o   n o t e  t h e  r a d i c a l   r e d i s t r i b u t i o n  of t h e  
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direct t a n g e n t i a l  s,tress as is. decreas.ed. 

A similar obs'ervation  regarding the d e f l e c t i o n  u). is  

also made. The characteristic p a r a b o l i c   s o l u t i o n  of t h e  

membrane s o l u t i o n  is s e e n   f o r   h i g h  x, whi le  zero  normal 

d e f l e c t i o n  i s  approached  for  small , i n  which case t h e  

i n e r t i a   l o a d   t e n d s   o n l y  t o  stretch the  midsurface.  

From these computations the importance of the   bending  

c o n t r i b u t i o n  i s  seen  and it is  concluded t h a t  Johnson's 

r e s u l t s  181 may lead t o  s e r i o u s   e r r o r s .  I t  is  concluded   tha t  

f o r   v a l u e s  of x which are n o t   l a r g e  the f u l l   b e n d i n g  

theory  should be employed for   computat ion of t h e  equi l ibr ium 

state even i f  a membrane theory i s  subsequent ly   used   for  

the v i b r a t i o n   a n a l y s i s .  

5.7 The Limit ing Case of  Large x -Existence of Boundary 

Layer Phenomenon a t  O u t e r  Edge 

It is  no ted   i n   F igu res  20 t o  2 4  t h a t  a s  x becomes 

l a r g e  t h e  direct  stresses Nrr  and Nee and t h e  displacement 

approach those p red ic t ed  f r o m  t h e  membrane theory.  The 

bending stresses Brr and BOe which a r e   c a l c u l a t e d  from 

membrane theory are seen  to   approach  those computed by the  

g e n e r a l   t h e o r y   f o r   l a r g e  x i n  the i n t e r i o r  of t h e  shell ,  

b u t   d e v i a t e   s i g n i f i c a n t l y   n e a r  the edge of t h e  shell .  I n  

fact ,  w e  n o t e   t h a t  the membrane theory is incapable  of 

s a t i s f y i n g  the zero  bending moment condi t ion  a t  the o u t e r  

edge,  and t h i s  accounts for t he  deviat ion  between  the two 
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soluti.ons in this  region.  Since  .for  large h the .deviation 

between  the  general  theory  and  the  membrane  theory  is 

localized  near  the  outer  edge,  a  boundary  layer  phenomenon 

is  suggested.  Reissner [14, 381 has  .dealt  extensively  with 

problems of this  type  for  laterally  loaded  shallow  spherical 

shells. It is the  purpose of this  section  to  demonstrate  the 

existence of this  phenomenon  for  the  case  of  the  spinning 

shell. 

Because  of  the  ease  with  which  a  nonlinear  membrane 

solution  can be obtained,  it  is  convenient  to  investigate 

this  phenomenon  by  using  Reissner's  nonlinear  equations  for 

the  spinning  shell  given  by  Eqs. ( 2 . 4 . 8 )  and ( 2 . 4 . 9 )  and 

repeated  here 

where 

dff -- 4 
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(5.7.4) 

The  boundary  conditions  are  that the  solution  be  regular 

and symmetric at the  origin  and t h a t  at the  outer edge, 

r=b 

in  which  case  we  obtain 
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I f  w e  l e t  

where 

then  w e  have 
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(5 .7.7)  

It i s  s e e n   t h a t  f is a measure  of t he   non l inea r i ty   o f   t he  

problem. 

The stresses and  displacements w i l l  become 

By expanding  and  using  shal low  shel l   re la t ions  and  the 

d e f i n i t i o n   o f  x w e  o b t a i n   f o r  d*/'g 
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The  bending  moments  will  then  become 

The  boundary  conditions on  the  non-dimensional  form of the 

problem will  be  that f (x) and g(x) be  regular  and  symmetric 

at x=O and that at x=l  

Note  in Eq.  (5.7.6) that 

I De2 i t \ 
" 

b4 E t  * 4gcI-f') = >  

Hence, we  write  the defining  equations 
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(5.7.9) 

To inves t iga t e   t he   boundary   l aye r  phenomenon which 

e x i s t s   f o r   l a r g e  w e  make use  of some of the   concepts  of 

pe r tu rba t ion   t heo ry  [39 401 . Since   t he   ou te r   edge  i s  t h e  

reg ion  of p r i m a r y   i n t e r e s t  w e  w i l l  consider   " inner"   and 

"ou te r "   expans ions   r e l a t ive  t o  t h a t   p o i n t .  A s u i t a b l e   o u t e r  

v a r i a b l e  i s  X wi th /=  I i n  which case Eqs. (5.7.8)  and 

(5.7.9) become 

(5.7.10) 

(5.7.11) 

where is -assumed t o  be a small parameter   def ined by 
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The f i r s t  term i n  asymptotic series' i n  powers .of w i l l  

be   def ined  by  the  equat ions 

(5.7.12) 

(5.7.13) 

A s o l u t i o n  t o  t h i s  degenerate  set of equat ions  which 

s a t i s f i e s  t h e  boundary  conditions a t  x=O is taken as 

(5.7.14) 

(5.7.15) 

Th i s  is t h e  nonl inear  membrane s o l u t i o n   i n  t h e  case when 

the membrane shell  i s  n o t   d e f l e c t e d   t o  a f l a t  p l a t e .  We 
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w i l l  assume i n   t h i s   a n a l y s i s  t ha t  7 f L I t h e   c o n d i t i o n   t h a t  

the  deformed membrane s h e l l  i s  n o t  f l a t ,  so t h a t   t h e  above 

form of o u t e r   s o l u t i o n  i s  v a l i d .  It is n o t e d   t h a t  Eqs. (5.7.14) 

and  (5.7.15) w i l l  no t   s a t i s fy   t he   boundary   cond i t ion   o f  

ze ro  moment a t  x = l f   s i n c e  it is found  tha t  

where 

To i n v e s t i g a t e   t h e   n a t u r e  of t h e   s o l u t i o n   i n   t h e  

neighborhood  of  the  free  edge a t  x= l  it proves  convenient 

t o  recast the  problem by def in ing  

I n  t h i s  case Eqs. (5.7.8)  and  (5.7.9) become 

(5.7.17) 



The new boundary   condi t ions   requi re   ' tha t  F and G be 

regular   and symmetric a t  x=O,. and t h a t  a t  the  . f ree   edge 

F =  0 

The inner  problem i s  formulated by choosing  the 

parameter /u t o  be  

i n  which case 

The outer   edge i s  made t h e   o r i g i n  by the  change of v a r i a b l e  

Equations  (5.7.16)  and  (5.7.17)  then become 

(5.7.18) 

(5.7.19) 
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The boundary  conditions 'are 

y = o :  

F - = o  
I 7 ' 7 :  F and G regular   and  symmetric 

I f  7 i s  0 (1) , t h a t  is  i f  w e  restrict  o u r s e l v e s   t o  a 

narrow  region  in  which 1 - c/b is 0 ( 6 )  , then E q s .  (5 .7.18)  

and (5.7.19)  and the boundary  conditions  can be approximated 

t o   w i t h i n  terms of O&) by 

(5.7.20) 

(5.7.21) 

I " 



Equations , (  5...7..  20) and (5..7.21). can be construed as 

defining  the  te'rm  of O(Eo) in an asymptotic  series  .in  powers 

of the  small  parameter . In  principle,  the  higher  order 

terms  could  be  sequentially  obtained  and  the  procedure  of 

matching  with  the  outer  solution  could  be  accomplished. 

However,  we  have  succeeded  in  demonstrating  that  there  does 

in  fact  exist  a  narrow  region  in  which  the  solution  departs 

radically  from  the  outer  solution  and  can  be  made  to 

satisfy  the  free  edge  condition, 

From  the  above  analysis  and  the  behavior  shown  by  the 

computed  solutions,  it  is  concluded  that  for  large x the 

solution  is  characteristic  of  membrane  theory  over  the 

interior  of  the  shell  but  in  a  narrow  region  at  the  edge  it 

will  involve  significant  bending  to  allow  satisfaction  of 

the  free  edge  condition. 

A complete  analysis of the  boundary  layer  phenomenon 

will  be  undertaken  as  an  extension  of  the  current  effort. 

5.8 Linear  Theory  for  the  Case  of  a  Fully  Clamped  Central 

Hub 

In  the  case  of  a  fully  clamped  central  hub  the  boundary 

conditions  to  be  satisfied  by  the  general  solution  given  by 

Eqs. (5.4.7) and (5.4.8) are 
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(5.8.2) 

The  Kirchoff  condition  again  requires  that C6 vanish. The 

general  solution  then  becomes 

(5.8.3) 

(5.8.4) 

(5.8.5) 



(5.8.6) 
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where 
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n =o 

The cons t an t s  C1 

condi t ions  which 

through C5 are determined  from the boundary 

lead t o  the f o l l o w i n g   f i v e   a l g e b r a i c  

equat ions (here w r i t t e n   i n  the same order as the  boundary 

condi t ions  of Eqs. (5.8.1)  and  (5.8.2)) : 

(5.8.10) 

(5.8.11) 
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(5.8.12) 

(5.8.13) 

(5.8.14) 

I t  is  s e e n   t h a t  C1 through C 4  are def ined  by  the  four  

Eqs. (5.8.11)  through  (5.8.14)  while C5 is obtained  from 

Eq. (5.8.10).  As soon as the   cons t an t s  are determined,   the  

d i r e c t  stresses, bending moments,  and  normal def lec t ion   can  

be computed f r o m  Eqs. (5.8.5) , (5.8.6) , (5.8.7) , (5.8.8) , 
and  (5.8.31,  respectively.  The outer   sur face   bending  stresses, 

defined  by Eqs. (5.6.1)  and  (5.6.2) are d i r e c t l y   o b t a i n a b l e  

from the  bending stress r e s u l t s .  

For   demonstrat ion  purposes  we have  evaluated  the stresses 

and   d i sp lacements   for  the case of a hub wi th  (=/b) .L 0.125 

and v' = 0.20 . The r e s u l t s ,   p l o t t e d   f o r   s e v e r a l   v a l u e s  

I of x , are g i v e n   i n   F i g u r e s  25 through 4 0 .  The charac te r -  
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istics of t h e   s o l u t i o n  w i l l  be d i s c u s s e d   i n   S e c t i o n  (5.10) 

where they  are compared w i t h   t h e   n o n l i n e a r   r e s u l t s .  

5.9 Nonlinear   Theory  for   the Case of a Fu l ly  Clamped Cent ra l  

Hub 

As w i l l  b e   s e e n   i n   d e t a i l   i n   C h a p t e r  6 ,  the na tu re  of 

the  spinning shell vibrat ion  problem i s  c r i t i c a l l y  

dependent on the  stress and   d i sp lacement   d i s t r ibu t ions  

obtained  from t h e  equ i l ib r ium  so lu t ions .  To a s s u r e   t h a t  

an   accura te   eva lua t ion   of  the equi l ibr ium state is a v a i l a b l e  

f o r  the  dynamic  problem,  extensive  calculations  have  been 

performed,   for  the case  of the  clamped c e n t r a l  hub, using 

Re i s sne r ' s   non l inea r   t heo ry  [ 1 4 ]  which allows f i n i t e  

ro t a t ions   o f  shell elements.  The l i n e a r  and   non l inea r   r e su l t s  

have  been  compared  and the  regions of pa rame te r   va lues   i n  

which the nonl inear  effects are important   have  been  es tabl ished.  

The governing  equat ions of Re i s sne r ' s   t heo ry  were 

derived  from a v a r i a t i o n a l   p r i n c i p l e  i n  Chapter 2 ,  w e r e  used 

i n  the boundary   l ayer   ana lys i s   in   Sec t ion  (5.7), and are 

repeated here fo r   r e f e rence :  
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where 

(5.9.3) 

(5.9.4) 

(5.9.5) 

As  shown  in  Section 5.7 , a non-dimensional form of 

these equations  can be written 

(5.9.6) 

(5.9.7) 

where 

r 
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and 

The func t ions  f and g are def ined  such that  

(5.9.8) 

(5.9.9) 

(5.9 .lo) 
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Equations (5.9.8),   (5.9.9),  and  (5..9.10) can be  w r i t t e n  

i n  t h e   s l i g h t l y   m o d i f i e d  form 

= % y X >  

(5.9.11) 

(5.9.12) 

(5.9.13) 

where for   convenience w e  have  defined 

The d e f i n i t i o n s  of E q s .  (5.9.111,  (5.9.12),  and  (5.9.13) 

prove t o  be  convenient when d e s c r i b i n g   t h e   e q u i l i b r i u m   d i r e c t  

stress and d i sp lacemen t   d i s t r ibu t ions  for  the  v i b r a t i o n  

problem i n  Chapter 6 .  

The bending moments are defined  by 
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(5.9.14) 

(5.9.15) 

The outermost  surface  bending  stresses  are  given by [13] 

TrQ - - + - 6 4 8 .  
R 

- 
tz 

By referring  to E q s .  (5.9.14) and (5.9.15) , and making use 
of the  shallow shell approximations,  it  is  found  that 

The boundary conditions accompanying E q s .  (5.9.6) and 
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( 5 . 9 . 7 )  are 

x = \ :  

8 " O  
v 

(5.9.18) 

(5.9.19) 

Equations  (5.9.6),  (5.9.7),  (5.9.18)  and  (5.9.19) 

constitute  a  nonlinear  two-point  boundary  value  problem. 

A  method  which  is  essentially  a  modification  of  Archer's 

technique [18] has  been  employed to obtain  solutions  for  the 

stresses  and  axial  component of displacement. 

Archer's  method  is  iterative  in  nature.  He  solves  the 

linear  portion  of  the  problem  and  then  utilizes  this  solution 

to  evaluate  the  nonlinear  terms.  These  are  then  treated 

as  an  additional  nonhomogeneous  contribution  to  the  linear 

equations  for  the  next  solution  step.  This  procedure  is 

carried  out  for  several  iterations  until  successive  solutions 

coincide  to  within a specified  error.  Archer's  chief 

contribution  is  the  finite  difference  scheme  which he has 

found to  be  appropriate  for  solutions to the  successive 

linear  two  point  boundary  value  problems. 
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- 1  

Archer's  method, i n  i t s  basic   form,  w a s  i n i t i a l l y  

employed t o  o b t a i n   s o l u t i o n s  t o  the  present   problem. The 

g r i d  employed 36 p o i n t s   i n   t h e   i n t e r v a l   f r o m  X t o  

X .L I and  represented   near ly   the  l i m i t  in   complexi ty  

which  could  be  handled on t h e  Wichi ta   S ta te   Univers i ty  

IBM 1 6 2 0  d i g i t a l  computer. While some r e s u l t s   o b t a i n e d  by 

t h i s  method were s a t i s f a c t o r y ,   s e v e r a l   i n s t a n c e s   o c c u r r e d  

i n  which the   i t e r a t ion   p rocedure   d ive rged .  S ince  a buckling 

phenomenon i s  not   expected,  it was concluded   tha t  t h e  lack 

of  convergence w a s  due t o  some inadequacy   in   the   t echnique .  

N o  a t tempt  was made t o   i d e n t i f y   t h e   s o u r c e   o f  t he  conver- 

gence  problem  and it is  p o s s i b l e   t h a t  t he  p a r t i c u l a r  

implementation  of  the method w a s  not   adequate .  

I n  view  of the convergence  problems  encountered  with 

Archer ' s   bas ic   t echnique ,  a s l i g h t l y   m o d i f i e d  method was 

employed  and  convergence was ob ta ined   fo r  a l l  combinations 

of  parameters  used. This  method, d i scussed  more completely 

i n  Reference [41], employs t h e   f i n i t e   d i f f e r e n c e  method of 

Archer ,   bu t   def ines   the   success ive  l inear  t w o  p o i n t  

boundary   va lue   p roblems  involved   in   the   i t e ra t ion  i n  a 

d i f f e r e n t  way. The method i s  bes t   exp la ined  by consider ing 

a simple  example. A s s u m e  t h a t  w e  have  the  simultaneous 

nonl inear   equat ions 
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The f i r s t   s t e p   i n   t h e   p r o c e d u r e  would be  t o  o b t a i n  41 
and , s o l u t i o n s  t o  t h e   l i n e a r  problem 

$," + = 0 (5.9.21) 

We then write t h e   t r u e   s o l u t i o n   a s   t h e  sum of 

and some remainder terms &? and 1c/.L 

+ =  # I  + # x  (5.9.22) 

" " . 
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I n  E q s .  (5.9.23) , +f and q. are known func t ions  of 

x -  
W e  now repeat   the   'above  procedure  by  consider ing & 

$3 t o   b e   t h e   s o l u t i o n   t o   t h e   l i n e a r   p o r t i o n   o f  Eq. (5.9.23) : 

(5.9.24) 

(5.9.26) 

The equa t ions   fo r  d4 @+ a re   ob ta ined  by s u b s t i t u t i n g  

Eqs.  (5.9.26) i n  Eqs.  (5.9.23)  and  employing  Eqs.  (5.9.24) : 

In   t hese   equa t ions  4, 4 4 , (L3 a r e  known funct ions .  

We p r o c e e d   a s   b e f o r e ,   s o l v i n g   t h e   l i n e a r   p a r t   o f  Eqs. (5.9.27) 

and  proceed  through n such s t e p s   u n t i l  &xm-, / and 
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become  small  compared  to  the  accumulated 

,solutions 

n 

The  main  advantage  of  this  method  is  that  at  each 

iteration  after  the  first  some  features of the  nonlinearities 

are  included  in  the  linear  equations,  while  in  Archer's 

method  the  particular  form of the  nonlinearity  is  relatively 

unimportant  at  a  given  solution  step.  The  principal  dis- 

advantage is, of  course,  the  increased  complexity  and  logic 

involved. It can  be  seen  from  Eqs. (5.9.211,  (5.9.24) and 

(5.9.27) that  the  linear  equations  to  be  solved  change 

from  step  to  step.  However,  the  change  is  systematic  and 

can  be  accounted  for  simply by updating  the  coefficient 

matrices  in  the  finite  difference  scheme  after  an  iteration. 

Other  than  the  necessity  0.f  a  few  more  computer  instructions, 

the  computational  requirements  for  this  method  are  not 

substantially  more  severe  than in Archer's  basic  technique. 

In  the  application  of  the  above  technique  to  Eqs. 

(5.9.61,  (5.9.71,  (5.9.181, and (5.9.19) convergence  was 

obtained  for  all  the  combinations of parameters  which  were 

tried.  The  results of these  computations  are  plotted on 

-" 
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Figures  2 5  through 43 where they  are compared w i t h  t h e  

cor responding   l inear   res 'u l t s  for  6 = 0..125. a 

5.10 Comparison of Resul t s  for  the  Linear   and  Nonlinear  

Theories 

Solu t ions  for  t h e  stresses and  displacements   in  the 

spinning shel l  f u l l y  clamped a t  the  hub have  been  obtained 

by using the  l i n e a r   t h e o r y  of Sec t ion  5.8 and t h e  non- 

l i nea r   t heo ry   o f   Sec t ion  5.9 w i t h  a g r i d   o f  36 p o i n t s   i n  

t he   r eg ion  0.125 5 X L, I . We w e r e  r e q u i r e d   t o  impose 

t h e   r e s t r i c t i o n   o f  36 gr id   po in ts   because   o f   computa t iona l  

l i m i t a t i o n s .   I n  some of the r e s u l t s  some s l i g h t   d e v i a t i o n s  

f r o m  more e x a c t   r e s u l t s  w i l l  be noted   bu t  the genera l  

agreement  between  comparable  calculations i s  considered 

s a t i s f a c t o r y .  The r e su l t s   have   been   p lo t t ed   i n   F igu res  

25 through 43 for  four   va lues   o f  t h e  shell  geometry 

parameter = 0.058 1 . 0  3 .O , and 7.0 

which  cover the case  of  a n e a r l y   f l a t  she l l  t o  one w i t h  

a f a i r l y   s u b s t a n t i a l   c u r v a t u r e .   F o r  each value  of  x w e  

have  obtained the l i nea r   so lu t ion   and  the  non l inea r   so lu t ion  

f o r  f i v e  values   of  # which is  the i n e r t i a   l o a d i n g  

parameter   and  scales  the inf luence   o f  the nonl inear  terms. 

We have  taken v = O . O / ,  0.3 1 . 0  , 6.0 and 

IZo- ol which cover t h e  range  from  very low t o  very  high 

i n e r t i a   l o a d i n g .  A value  of \I" =0.5 would  correspond t o  

de f l ec t ion   o f  t he  s h e l l   t o  a f l a t   p l a t e   i n  t h e  nonl inear  
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membrane  shell  theory  (s.ee Eq. (5..7..15)). 

Figures  25  through 2 8  show  the  radial  direct  stress. 

For  small x it  is  seen  that  the  stres's  distribution  is 
nearly  that  of  the  spinning  flat  fully  clamped  disk. 

Furthermore,  for x 'L 0.0580 and x = 1.0 , practically  no 
nonlinear  effect  occurs,  as  is  seen  by  the  fact  that  no 

variation  with  occurs,  to  within  the  accuracy  of  the 

graphs,  and  by  the  fact  that  the  linear  and  nonlinear 

theories  are  in  good  agreement.  For  increasing A we 

find  a  substantial  variation of the  solution  with 'd' . For 

low the  nonlinear  and  linear  solutions  nearly  coincide 

while  for  large \d" the  solution  is  nearly  that  of  the  flat 

disk. In  particular,  for  small f and  increasing x , 
the  characteristic  decrease  in  importance  of  the  radial 

stress  is  noted. 

These  phenomena  are  readily  explainable  on  physical 

grounds.  For  small A the  shell  is  very  nearly  flat so that 

we expect  the  stress  distribution  to  be  near  that of the  flat 

disk.  For  higher 1 curvature  effects  become  important 
and  for  small f a  membrane  stress  distribution  is  approached. 

For  increasing  the  disk  progressively  flattens  out  and 

the  stress  distribution  alters  radically  until  finally,  for 

very  high 1 , the  stress  distribution  is  about  the  same  as 
if  the  shell  had  been  flat  to  start  with. In this  case  the 

stress  distribu'tion  required to overcome  the  initial  curva- 
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t u r e  i s  small compared t o  t h e  a d d i t i o n a l  stress b u i l t  up 

a f t e r  the d i sk  i s  e s s e n t i a l l y   f l a t .  

Figures  29 through 32 p re sen t  computed r e s u l t s   f o r  the 

t a n g e n t i a l   d i r e c t  stress. The same t r e n d s  are seen here as 

were seen i n  t he  case of t he  radial  d i r e c t  stress. For 

small h the  stresses a re   t hose  which o c c u r   i n  a f l a t  

d i s k  and  no  nonlinear effect  i s  poss ib l e .  For high x and 

small the l i n e a r  membrane resu l t s   a re   approached ,   and  

f o r   i n c r e a s i n g  t h e  nonl inear  effects cause a r a d i c a l  

v a r i a t i o n   i n  t h e  stress. For  very  high \6A t h e   f l a t  d i s k  

r e s u l t s   a g a i n  are approached. 

Figures  33 through 4 0  are p l o t s   o f  t h e  magnitude  of 

t h e  maximum bending stresses. The bending stresses were 

computed from the r e l a t i o n s  

The non-dimensional  forms  plotted  in the f i g u r e s ,  are 
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where w e  have introduced 

For x =  0.05% , t he  shell i s  n e a r l y   f l a t ,  and p r a c t i c a l l y  

no  bending stress i s  generated,  and no n o n l i n e a r   e f f e c t  i s  

seen.  For X=l-o , the  s h e l l  is still r e l a t i v e l y   f l a t  s o  

t h a t  very little nonl inear  effect  i s  s e e n   u n t i l  becomes 

ve ry   l a rge  and t h e  d i s k  i s  e f f e c t i v e l y   f l a t t e n e d   o u t .  The 

bending stress shown f o r  =IT0 would be e s s e n t i a l l y  the 

res idua l   bending  stress r e q u i r e d   t o   f l a t t e n  t h e  shell and 

would show almost no v a r i a t i o n  for  f u r t h e r  i n c r e g s e s   i n  

. The parameter \6" could also be  lowered  considerably 

b e f o r e   s i g n i f i c a n t   v a r i a t i o n  i n  the bending stress i s  

seen. When x is  increased  t o  3 and  above the nonl inear  

e f f e c t s   a p p e a r   f o r   r e l a t i v e l y  small values  of $ . The 

e f f e c t  of i nc reas ing  # is  t o  decrease the  bending stresses. 

For high the res idua l   bending  stress becomes small 

f o r   t h e   h i g h e r   v a l u e s  of x as the membrane effects become 

predominant. The characteristic i n i t i a l   i n c r e a s e   i n .  

bending stress w i t h  i nc reas ing  h up t o  a p o i n t ,  and  then 
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decreasing  bending  stres's with ..increasing x is. clearly 
evident. 

Figures 41 through 4 3  .present  the  results of'the 

nonlinear  theory  for  the  bending  slope. We have  not 

included  the  case A: O.M8since the  results  for  the  bending 
slope  are on the  order  of  and  the  single  precision 

accuracy is  open to  question.  For  the  case x =  /* 0 we 

have  used a scale  factor  of l o 2  in  order  to  maintain a 

uniformity  in  the  figures.  Further,  note  that we  have 

employed  the  nondimensionalization 

which  can  be  written 

A particularly  interesting  feature  occurs  for  large X 
when 6 i s  large.  Note  when r: 12 0 with )r 3.0 or 
7. 0 the  slope  of  the  deflection  curve  is  nearly 

linear.  Xn  this  situation  the  disk  has  practically 
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f l a t t ened   ou t   and   t he   bend ing   s lope  has become 'the. negat ive 

o f   t h e   o r i g i n a l   s h e l l   s l o p e .   T h i s   e f f e c t  i s  no t   nea r ly  

as predominant   for  smaller x . This   impl ies  h/k is  

small and  both h small and t l a r g e  would  reduce  the  tendency 

t o  f l a t t e n   o u t .  

The r e su l t   o f   p r imary   i n t e re s t   f rom  these   computa t ions  

is the   s t rong   non l inea r   behav io r   o f   t he   so lu t ions   fo r  

i nc reas ing  \5' p a r t i c u l a r l y  when x is not   very small. 

The s u b s t a n t i a l   v a r i a t i o n   o f   t h e   s o l u t i o n s   w i t h   c h a n g i n g  

sugges t s   t ha t   cons ide rab le  care should be e x e r c i s e d   i f  

anyth ing   bu t   the   nonl inear   theory  i s  t o  be  employed f o r   t h e  

computat ion  of   the  equi l ibr ium  configurat ion.  

5.11  Conclusions  Regarding  the  Appropriate  Theory  for 

Computation  of  the  Equilibrium State 

A s  w i l l  be seen i n  Chapter 6 ,  the  equations  of  motion 

o f   t he   sp inn ing   sha l low  sphe r i ca l   she l l   f o r   f r ee   v ib ra t ion  

about   the  equi l ibr ium  configurat ion  depend  s t rongly on 

t h e  direct  stresses and  displacements   which  exis t   in   the 

equi l ibr ium s ta te .  For   t h i s   r ea son   pa r t i cu la r   ca re   shou ld  

be   exe rc i sed   i n   choos ing   t he   appropr i a t e   t heo ry   fo r   t he  

a n a l y s i s   o f   t h e   s t e a d i l y   s p i n n i n g   s h e l l .  

By r e f e r r i n g  t o  Figures  20 through 43 and the  preceed-  

ing   ana lyses  it i s  s e e n   t h a t   f o r   l a r g e  x a membrane theory 

i s  very   near ly   exac t   except   for   nar row  reg ions   near   the  

boundaries  where  bending is important.  The width of t h e s e  
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reg ions   decreases  .as x i nc reases ,  

For   smal le r   va lues  of x , beiiding becomes important  

and a c o n t i n u o u s   t r a n s i t i o n  t o  the  f l a t   p l a t e   r e s u l t s  

( x-0) r e q u i r e s   t h a t  it be considered. 

Small  va lues   o f  the ine r t i a   l oad ing   pa rame te r  @ 
give  rise t o   n e g l i g i b l e   n o n l i n e a r   e f f e c t s   b u t  these e f f e c t s  

become i n c r e a s i n g l y  more important as i s  increased. 

The e f f e c t   o f   i n c r e a s i n g  i s  more predominant when x is 

la rge .  

I t  i s  concluded   tha t   any   genera l   purpose   v ibra t ion  

ana lys i s   should  be based on the nonlinear  theory  which 

includes  bending effects. The use of a membrane theory ,  

as employed  by  Johnson [ 8 1 ,  is  n o t   a p p r o p r i a t e ,   p a r t i c u l a r l y  

for  small x . I n   a d d i t i o n ,  the e f f e c t  of bending   in  t h e  

edge  zones on t h e  v i b r a t i o n   c h a r a c t e r i s t i c s   s h o u l d  be 

examined i n  the  membrane case. The use of a l i n e a r   t h e o r y  

may w e l l  be   adequa te   fo r   mos t   p rac t i ca l   app l i ca t ions   bu t  

i ts  use   would   no t   subs tan t ia l ly   s impl i fy  the  v i b r a t i o n  

ana lys i s .  
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CHAPTER 6 

THE EQUATIONS  OF  MOTION  FOR  THE  FREE 
VIBRATIONS  OF  A  SPINNING  SHALLOW  SPHERICAL  SHELL 

6.1 Introduction 

The  study  of  the  transverse  vibrations  of  a  spinning 

shallow  spherical  shell  presents  two  interesting  features 

not  found  in  ana1yse.s  of  non-spinning  shells. The  first, 

and  most  significant,  variation  introduced  by  the  presence 

of  spin  is  the  generation  of  a  pre-stressed  equilibrium 

configuration  about  which  the  vibrations  occur.  This 

configuration  has  been  studied  in  detail  in  Chapter 5. The 

second  new  feature  which  arises  is  the  presence of a 

Coriolis  coupling  between  the  three  deflection  components. 

These  two  additional  considerations  combine  to  produce 

a  mathematical  problem  which  is  different  and  considerably 

more  complex  than  the  corresponding  problem  for  the 

stationary  shell. It is  the  purpose  of  this  chapter  to 

fully  formulate the problem  for  numerical  computation  by 

an  established  technique. The available  computation 

facility  has  proved to be  inadequate  to  handle  a  problem of 

th is  size so that  no  numerical  results  have  been  obtained. 

Efforts  are  under  way to pursue  the  matter  further  at  another 

~ 
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f a c i l i t y .  

6.2 Basic Equations--Meridional,   Tangential ,  and Normal 

Def lec t ions  

The d i f f e ren t i a l   equa t ions   wh ich   gove rn   t he  small 

v i b r a t i o n s  of a spinning shallow s p h e r i c a l  shel l  about i t s  

equi l ibr ium  conf igura t ion  w e r e  g i v e n   i n  Eqs.  (2.5.9), 

(2.5.10),  and  (2.5.11) for  t h e  case when t h e  d e f l e c t i o n s  

are r e s o l v e d   i n  the meridional ,   tangent ia l ,   and  normal  

d i r e c t i o n s   r e l a t i v e  t o  the  undeformed shell. They are 

repea ted   here   for   convenience   wi th   the  now uns ta r r ed  

q u a n t i t i e s   u n d e r s t o o d   t o   s i g n i f y   p e r t u r b a t i o n   q u a n t i t i e s  

and the q u a n t i t i e s   s u b s c r i p t e d  wi th  "0" understood t o  

represent   equi l ibr ium  values:  

( 6 . 2 . 1 )  

- 

( 6 . 2 . 2 )  
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(6.2.3) 

In addition to  the equations  for  dynamic  equilibrium we 

must include the mid-surface strain-displacement relations 

for the perturbation  quantities,  here assumed small: 

(6.2.4) 

(6.2.5) 

(6.2.6) 

To complete  the  specification  of  the problem we state  the 

boundary  conditions for a shell of outer radius b with a 

fully clamped hub  of  radius a: 
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(6.2.7) 

U ) ( C Q , ~ )  = Wrj c o s ( m +  p t )  (6.2.9) 

With this form for  the  displacements  the  strains are  given 

by 
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By u t i l i z i n g   t h e  stress s t r a i n   r e l a t i o n s  

rre = &e 

w e  find t h a t  t h e  stresses can  be w r i t t e n  

where 

(6.2.11) 

(6.2.12) 
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(6.2.20) 



Further, from  Chapter 5, E q s .  (5.9.11If  (5.9.12) r and 

(5.9.13) we have  in  the equilibrium  configuration 

(6.2.21) 

(6.2.22) 

(6..  2.23) 

(6.. 2.24) 

we  write 

(6.2.25) 
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( 6 - 2 . 2 7 )  

(6.2.28) 

(6 .2.29)  
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where S, r S, S,, are defined by the bracketed 

terms  in Eqs. (6.2.29): 



The corres'ponding  non-dimensional  boundary  conditions  are 

(6.2.34) 

". . 

(6.2.35) 

It is  seen  that  the  non-dimensional  equations  of  motion 

depend  on  four  parameters: 

\r = ~ o r r - = , o d ' %  pay lo 

b h 7 = %WELL ~~ALLOWNEGI P A U A W E T E R  

In  addition,  the  boundary  co7ditions  require  the  specifica- 

tion of the  ratio of the  hub  radius  to  the  disk  radius, 

6' a It is observed  that  the  dynamic  problem  requires  the 

specification  of  one  additional  parameter  as  compared  to 

the  equilibrium  problem. It  can  be  seen  by  referring  to 

Eqs.  (6.2.31) , (6.2.321,  and  (6.2.33) that  the  extra 

parameter, - scales  the  relative  importance of the  inertia 

terms  in  Eqs.  (6.2.31)  and  (6.2.32)  and  the  Coriolis  and 

b 
R r  

centripetal  acceleration  terms  in  Eq.  (6.2.33).  Since  the 
I 
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sha l low  she l l   t heo ry  us.ed he re   ' imp l i e s   t he   neg lec t  of terms 

of the o rde r  of ( v ~ ) ~  it i s  concluded that  terms of 

this o r d e r   i n  t h e  equat ions  of motion  can also be dropped, 

provided   tha t   on ly  the t ransverse  motions are of i n t e r e s t .  

This  i s  i n  agreement w i t h  t h e   r e s u l t s   o f  R e i s s n e r  1221 

regarding t h e  n e g l e c t   o f   l o n g i t u d i n a l   i n e r t i a   f o r   p r i m a r i l y  

t r a n s v e r s e   v i b r a t i o n s  of shal low shells and  extends  the 

conc lus ion   t o   i nc lude  t h e  Cor io l i s   and   cen t r ipe t a l   coup l ing  

terms i n  the equat ion   for   t ransverse   mot ion .  A s  shown by 

Reissner ,  i f  advantage i s  t aken   o f   t he   neg lec t   o f  these 

h igher   o rder  terms t h e  governing  equations  can be 

s impl i f i ed  by t h e  in t roduc t ion   o f  a stress funct ion  which 

i d e n t i c a l l y   s a t i s f i e s  Eqs. ( 6 . 2 . 1 )  and ( 6 . 2 . 2 )  i n  t h e  

case  when t h e  r i g h t  hand sides are   zero .  The equat ion 

s a t i s f i e d  by t h e  stress func t ion  i s  found  by  employing a 

su i t ab le   compa t ib i l i t y   equa t ion .  

6.3  Basic  Equations--Radial ,   Tangential ,   and  Axial  

Def lec t ions  

For some purposes it may prove more convenient   to   have 

the govern ing   equat ions   reso lved   in  the r a d i a l ,   t a n g e n t i a l ,  

and a x i a l   d i r e c t i o n s   a s  was done  by  Johnson [8]  i n  t h e  mem- 

brane  case.  The equat ions for t h i s  case were o r i g i n a l l y  

given by  Eqs. (2.6.15),  (2 .6 .161 ,  and (2 .6 .19)  and are 

repeated here w i t h  the s t a r s  and bars   suppressed 
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(6.3.2) 

(6.3.3) 

The corresponding  strain-displacement  relations for  the  small 

perturbation  quantities  are 

(6.3.4) 

(6.3.5) 
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The  boundary  conditions for the  case  of a  fully  clamped hub 

of  radius a and a free  outer  edge will be given by Eqs. 

(6.2.7) and (6.2.8). 

By utilizing the  wave  type  solutions  given by Eqs. 

(6.2.9) the  strain displacement  relations can  be  written 

(6.3.8) 

(6.3.9) 

The stress-strain  relations can then  be employed to yield 

(6.3.10) 
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(6.3.11) 

In  terms of the assumed  form of solution  the  equations 

of motion  can  be  written 

(6.3.13) 

VI1 
+ Li;i T6,d - $(-S +Vgby) s, = vv-t -p2d (6.3.14) 

where 

/ " x =  - dZ + L d  d 
drr f d P  f'L 

" 

The equations of motion  in  terms of displacements  become 
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(6.3.16) 

where 8, and sf, are  defined  by Eqs.  (6.3.11). We 

obtain  non-dimensional  equations  in the  same  way as in 

Section 6.2 by employing Eqs.  (6.2.20) through (6.2.27) 

together  with  the  appropriate  non-dimensional  form of the 

stress-displacement  relations  for  this case: 

By introducing the non-dimensional  stresses S,  5, , 

%e defined by 
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(6.3.18) 
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Equations (6,2.34) and (6.2.35) can  also be employed to 

specify  the  boundary  conditions  for  this  case  except  that 

the  appropriate  definitions  of Sp and 5,, must  be 

employed  in Eqs. (6.2.35). As in the  case  of  meridional, 

tangential,  and  normal  deflections we find  that  the 

differential  equations  and  boundary  conditions  depend  on 

five  parameters.  In  addition, we once  again  note  the 

relative  unimportance  of  the  longitudinal  inertia  terms 

in  the  membrane  equilibrium  equations. 

There  does  not  appear  to  be  any  particular  advantage  in 

choosing  one or the  other  of  the  two  forms of the  governing 

equations  of  motion  for  purposes of numerical  computations. 

Although  the  form  valid  for  radial,  tangential,  and  axial 

deflections  appears  to  be  slightly  simpler  in  the  bending 

equation,  a  few  manipulations  can  be  employed  to  reduce  the 

other  equations  to  a  nearly  equivalent  form. 

6.4 Numerical  Computation  of  the  Natural  Frequencies  and 

Mode  Shapes 

The  method  which  is  proposed  here  for  the  numerical 

computation  of  the  natural  frequencies  and  mode  shapes  is 

an  adaptation of  a  technique  reported  by  Zarghamee  and 

Robinson [261. Reduced  to  its  basic  concepts  this  method 

is  an  extension  of  the  technique  used  in  Chapters 4 and 5 

to  determine  the  natural  frequencies  for  flat  membrane 

disks. 
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Since  the  problem is  l i n e a r  w e  know t h a t  a s o l u t i o n  

can  be  obtained as t h e  sum of a number of  independent 

fundamen ta l   so lu t ions .   In   pa r t i cu la r ,  w e  choose t o  d e f i n e  

our   fundamental   solut ions as those   so lu t ions   wh ich   s a t i s fy  

the boundary  conditions a t  one  boundary  but  which  have 

unspec i f ied   va lues  a t  the  other   boundary.  By superpos i t ion  

o f   t h e s e   s o l u t i o n s   w i t h   s u i t a b l e   a r b i t r a r y   c o n s t a n t s  w e  

ob ta in  a g e n e r a l - s o l u t i o n  whose constants   can  be  determined 

by the  requirement   that   the   remaining  boundary  condi t ions 

b e   s a t i s f i e d .   T h i s   p r o c e d u r e   l e a d s   t o  a set of homogeneous 

algebraic   equat ions  for   the  undetermined  constants   which 

can  only be s a t i s f i e d   i n  a non- t r iv i a l  way i f   t h e  

de te rminant   o f   the   coef f ic ien ts   vanishes .  The determinant  

o f   t h e   c o e f f i c i e n t s  i s  formed  from the  fundamental   solut ions 

and c e r t a i n   o f   t h e i r   d e r i v a t i v e s   e v a l u a t e d   a t   t h e   b o u n d a r y  

in   ques t ion .   S ince  these s o l u t i o n s  depend on the   undeter -  

mined na tura l   f requency  w e  f i n d   t h a t   t h e  problem  reduces t o  

t h a t  o f   f ind ing   va lues   o f   the   na tura l   f requency   for  which 

the   de te rminant   o f   coef f ic ien ts   vanishes .  

By r e f e r r i n g   t o   C h a p t e r s  4 and 5,  which d i s c u s s   t h e  

v ib ra t ions   o f   sp inn ing  membrane d i s k s ,  it can be v e r i f i e d  

t h a t   t h e   f u n d a m e n t a l   s o l u t i o n  was taken as t h a t   s o l u t i o n  

which s a t i s f i e s  the f i n i t e n e s s   c o n d i t i o n   a t   t h e   o u t e r   e d g e  

of t h e   d i s k .  The van i sh ing   o f   t he   de f l ec t ion  a t  t h e  hub 

leads t o  the   cond i t ion   t ha t   t he   fundamen ta l   so lu t ion  itself 
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vanish  at  the  hub. It is  seen  that the determinant of 

coefficients  in  this  case  reduces to a  single  element. 

The disk  vibration  analyses  led to exceptionally  simple 

eigenvalue  problems  since  the  boundary  conditions  were 

simple  and  the  form  of  the  fundamental  solutions  was  known 

apriori .. 
The  problem  at  hand  is  conceptually  the  same  but 

practically  considerably  more  difficult. Th'e boundary 

conditions, of course,  are  more  involved,  requiring  four 

conditions  at  each  ,boundary.  However,  the  biggest  complica- 

tion is that  the  form of the  fundamental  solutions  is  not 

known  apriori,  but  rather,  must  be  determined  by  numerical 

integration of the  equations  of  motion. The eigenvalue 

equation  requires  the  determination  of  the  zeroes  of  the 

determinant  of  coefficients  whose  elements  are  obtained 

by  numerically  integrating  the  equations  of  motion.. 

In the  present  problem we will identify  four  linearly 

independent  fundamental  solutions  which  satisfy  initial 

value  problems  defined  as  follows: 

( I )  o(u,U;o-) = O 

= Q  

Yields  fundamental  solution U ,  ( x )  , % ( x ) ,  kp, ( x )  
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Yields fundamental  solution 44, (x), ( ~ b  Ua,(d 

Yields 

0" 

fundamental  solution U, fk),  U; <e), d3 (K) 

Yields  fundamental  solution UqfX),  v 4 t x l  

( 6 . 4 . 2 )  

(6.4.3) 

( 6 . 4 . 4 )  



I n   t h e  above desc r ibed   i n i t i a l   va lue   p rob lems  the. l i n e a r  

ope ra to r  O~Y,~,US) = 0 r e p r e s ' e n t s   t h e   d i f f e r e n t i a l   e q u a t i o n s  

from E q s .  (6.2.31),   (6.2.32),   and  (6.2.33)  or Eqs.  (6.3.19), 

(6.3.20),   and  (6.3.21).   This  operator i s  a l s o  a func t ion  of 

t h e  unknown parameter   conta in ing   the   na tura l   f requency   of  

v ib ra t ion .  

I f  w e  denote a , fundamental   solut ion  vector  by 

then by superpos i t ion  w e  ob ta in  a g e n e r a l   s o l u t i o n  

(6 .4 .6 )  

o f   t h e   d i f f e r e n t i a l   e q u a t i o n s  

O ( 6 )  = Q 

( 6 . 4 . 7 )  

T h i s   g e n e r a l   s o l u t i o n   h a s   f o u r   a r b i t r a r y   c o n s t a n t s   t o   b e  

determined so t h a t   t h e   f r e e   e d g e   c o n d i t i o n s  are s a t i s f i e d .  

T h e  f ree   edge   condi t ions  w e r e  given by E q s .  (6 .2 .35)   for   the 

case  of  meridional,   tangential ,   and  normal  de.flections  and 

by these  same equat ions  with a su i t ab le   mod i f i ca t ion  of 

t h e   d e f i n i t i o n   o f  5 c  and 5 c e  i n  t h e  case o f   r a d i a l ,  

t a n g e n t i a l ,   a n d   a x i a l   d e f l e c t i o n s .   I n   e i t h e r   c a s e ,   t h e  

boundary  conditions  can  be w r i t t e n  i n   o p e r a t o r  form 
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111 

(6.4.8) 

Where B is  the  linear  operator  appropriate  to  the  particular 

boundary  conditions  used.  The  boundary  conditions  at  the 

free  edge  are  seen to lead  to  four  simultaneous  homogeneous 

algebraic  equations  for  the  Ai 

4 

(6.4.9) 

To emphasize  the  dependence  of  the  fundamental  solutions  on 

the  frequency  parameter (g) we write  the  algebraic  equations 

(6.4.10) 

These  equations  will  have  a  non-erivial  solution  only if the 

determinant of the  coefficients  of  the  Ai  vanishes. This 

determinant  is  seen  to  be  a  function  of  the  frequency 

parameter (2) so that we will  have  for  a  non-trivial  solution 
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(6 .4 .11 )  

where a(g\ is  the determinant  of the  c o e f f i c i e n t s  of t h e  

set  o f   a lgeb ra i c   equa t ions   i n  Eqs. ( 6 . 4 . 1 0 ) .  

The eigenvalue  problem is  s e e n   t o  be t h a t  of   f inding 

values   of  (%) f o r  which Eq. ( 6 . 4 . 1 1 )  i s  s a t i s f i e d .  The 

method of approach   for   so lv ing   the   e igenvalue   equat ion  i s  

t o   e v a l u a t e  t h e  de te rminant   for  a sequence  of  values  of 

(K) u n t i l  a s ign   change   i n  A ( % h i s  noted. A t  t h i s  po in t  

a s u i t a b l e   i t e r a t i o n  scheme is  employed t o  obta in   an  

accura te  estimate of t h e  eigenvalue.  This  scheme is  the 

same a s  the one  used i n  the d i sk  vibrat ion  problems  but  

is complicated  by the fac t  t ha t  each eva lua t ion  of the 

de terminant   requi res   four   numer ica l   in tegra t ions   o f  t h e  

gove rn ing   d i f f e ren t i a l   equa t ions .  

S ince  w e  a r e   d e a l i n g  here w i t h  shallow shells w e  do  not 

an t i c ipa t e   t he   r equ i r emen t   t ha t   ce r t a in   fundamen ta l  

s o l u t i o n s  be suppres sed   t o   p reven t  unbounded  growth a s  

discussed  by Zarghamee  and  Robinson. However, a s   t h e s e  

au tho r s   a l so   po in t   ou t ,  t h i s  f e a t u r e  may have t o  be a v a i l a b l e  

i f  ex t remely   th in  shells are t o  be s a t i s f a c t o r i l y   t r e a t e d ,  

and  even t h i s  c a p a b i l i t y  may be i n s u f f i c i e n t  if t h e  l i m i t -  

i n g  case of a t r u e  membrane shel l  i s  approached. 
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We cur ren t ly   have   ava i l ab le  the sub-programs  required 

f o r   t h e   c o n s t r u c t i o n  of a d i g i t a l  computer  program t o  carry 

o u t   t h e  above  described  computations.  They inc lude  a program 

t o  compute  and  tabulate   the  ‘equi l ibr ium stress and dis- 

p l acemen t   d i s t r ibu t ion ,  a numer i ca l   i n t eg ra t ion  scheme f o r  

de t e rmin ing   t he   fundamen ta l   so lu t ions   fo r   spec i f i ed   va lue  

of (+&) , a de terminant   eva lua t ion   procedure   for   ob ta in ing  

a($(&) , and  an i t e r a t ion   p rocedure   fo r   ob ta in ing   t he   ze roes  

of &(f!/-) . In   addi t ion,   these  sub-programs  could  be  used 

t o  compute t h e  mode shapes   fo r  a given  frequency i f   r e q u i r e d .  

W e  have  found  the  avai lable  I B M  1 6 2 0  Computer F a c i l i t y  

t o  be t o o  l imi ted  to   handle   problems  of   this  s i z e .  While 

most  of  the  sub-programs  have  been  checked  out  on  this 

f a c i l i t y  no resu l t s   have   been   ob ta ined   for   the   comple te  

problem. I t  is hoped t h a t   w i t h i n   t h e   n e a r   f u t u r e   t h e s e  

computations  can be completed a t  a la rger   computa t ion  

f a c i l i t y .  
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Figure 2. Coordinate  System  in  which  Displacements are 
Measured in  the  Meridional, Tangential, and  Normal 
Directions. 
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Figure 3. Coordinate  System  in which Displacements  are 
Measured Radially, Tangentially, and Axially. 
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Figure 4. Geometry of the  Inertia Load. 
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(a) HUB  FULLY  CLAMPED AT  RADIUS r=a 

(b) ANNULAR D I S K  WITH  INNER  RADIUS  r=QLOOSELY CLAMPED BY HUB OR RADIUS r=c 

(c) ANNULAR D I S K  WITH  INNER  RADIUS  r=Q,CLAMPED BY HUB OF r = C  SO THAT  FULL 
CLAMPING EXISTS  UP TO r = . g A N D   P A R T I A L   C L A M P I N G . E X I S T S  FOR g 6 r L c  

Figure 5. Hub  Configurations 
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Figure 6. Configuration  of  Disk w i t h  Fully Clamped Hub. 
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Figure 8. Variation of the  Frequency  Parametex.. p' , as  a 
Function  of  the  Hub  to Disk Radius Ratio, E, for  Various 
Values of the  Annulus  Radius  Ratio, 6, for  the  Symmetric 
Vibration  Case, 810, and for  the  Cases  of  Zero  and One 
Nodal  Circles,  n=O  and 1. . 
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Figure 9. Variation o f  the  Frequency  Parameter, p2, as  a 
Function  of  the  Hub  to Disk Radius  Ratio, E ,  for  Various 
Values of the  Annulus  Radius  Ratio, 6, for the.Symmetric 
Vibration  Case, s=O, and for  the  Case of Two Nodal Circles, 
n=2. 
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Figure lo. Variation  of  the  Frequency  Parameter, u , as.8 
Function of the  Hub to Disk  Radius  Ratio, E ,  fo r  Various. 
Values of the  Annulus  Radius Ratio, 6 ,  for  the  Symmetric 
Vibration  Case, s=O and for  the  Case of Three  Nodal  Circles, 
n=3. 
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Figure 11. Variation  of  the  Frequency  Parameter, p2 as a 
Function  of  the  Hub  of  Disk  Radius  Ratio, E, for  Various 
Values of the  Annulus  Radius  Ratio, 6, for  the  Case  of  One 
Nodal  Diameter, s=l, and  for the  cases  of  Zero and One 
Nodal  Circles, n=O  and 1. 
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Figure 12. Variation o f  the  Frequency  Parameter, p2, as a 
Function of the Hub  to Disk  Radius  Ratio, E ,  for  Various 
Values of the  Annulus  Radius  Ratio, 6, for the Case of 
One  Nodal  Diameter, s=l, and for the Case of Two Nodal 
Circles, n=2. 
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Figure 13. Variation of the  Frequency  Parameter, p , as 
a  Function  of  the  Hub  to  Disk  Radius  Ratio, E ,  for  Various 
Values  of  the  Annulus  Radius  Ratio, 6, for  the  Case  of One 
Nodal  Diameter, s=l, and  for the  Case  of  Three  Nodal  Circles, 
n=3. 
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Figure 14. Variation of the  Frequency  Parameter, p2, as a 
Function of &he Hub to Disk  Radius  Ratio, E ,  for  Various 
Values of the  Annulus  Radius Ratio, 6, for the  Case of 
Two Nodal  Diameters, 5-2, and for  the Cases of Zero of One 
Nodal  Circles, n=O and 1. 
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Figure 15. Variation of the  Frequency  Parameter, u 2 ,  as a 
Function  of'the  Hub to Disk  Radius  Ratio, E ,  for  Various 
Values  of  the  Annulus  Radius  Ratio, 6, €or  the  Case of 
Two Nodal  Diameters, s = 2 ,  and for  the  Case  of Two Nodal 
Circles, n=2. 
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Figure  16 .  Variat ion  of   the  Frequency Parameter, u2, a s  a 
Function  of  the Hub t o  Disk  Radius  Ratio,  E ,  f o r  Various 
Values  of  the  Annulus  Radius  Ratio,  6 ,  f o r   t h e  Case of Two 
Nodal Diameters, s=2, and f o r   t h e  Case of Three  Nodal Circles, 
n=3. 
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Figure 17., Variation  of the  Frequency  Parameter, p 2  , as a 
Function  of  the  Hub  to  Disk  Radius  Ratio, E ,  for  Various 
Values of the  Annulus  Radius  Ratio, 6, fox the  Case  of  Three 
Nodal  Diameters, s=3 and for  the  Cases of Zero and One  Nodal 
Circles, n=O and 1. 

- 200 - 



1000 L 
5001" 

L 
t 

100 ..I 
0 0.2 0 . 4  0 . 6  0 . 8  1 . 0. 

E = c/b 

Figure 18.. Variation of the  Frequency Parameter, v2, as a 
Function  of  the Hub t o  D i s k  Radius Ratio, E ,  for .Various 
Values of the Annulus Radius Ratio, 6, for the Case .of . 
Three Nodal Diameters, s=3, and €or the Case of Two Nodal 
Circles, n=2. 
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Figure   19 .   Var ia t ion  of the  Frequency  Parameter ,  u 2 ,  as a 
Funct ion of t h e  Hub t o  Disk  Radius R a t i o , €  , f o r   V a r i o u s  
Values of the  Annulus  Radius Ratio,  6 ,  f o r   t h e  Case of Three 
Nodal Diameters, s = 3 ,  and f o r   t h e  Case of Three Nodal 
Circles ,n=3.  
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Figure 20. Radial  Direct  Stress  Resultant  for  Freely 
Spinning Shell. Linear  Theory  with y =0.20. 
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Figure  21. Tangent ia l  Direct Stress R e s u l t a n t   f o r   F r e e l y  
Spmning  S h e l l .  Linear  Theory w i t h  )J =0.20. 
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Figure 2 2 .  Radial  Bending  Stress  Resultant  for  Freely 
Spinning  Shell .   Linear Theory with 3 = 0 . 2 0 .  
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Figure  23. Tangential   Bending Stress R e s u l t a n t   f o r   F r e e l y  
Spinning   She l l .   L inear   Theory   wi th  )J =0.20. 
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Figure 24. Normal  Deflection  €or  Freely  Spinning Shell. 
Linear  Theory  with y =0.20. 
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Figure  25 .  Rad ia l  Direct S t r e s s   R e s u l t a n t   f o r   S p i n n i n g  
S h e l l   w i t h   F u l l y  Clamped Hub. Linear   and  Nonlinear   Theory 
w i t h  =0.058 and V =0.20. 
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Figure 26.- Radial  Direct  Stress  Resultant  for  Spinning 
Shell  with  Fully  Clamped H u b .  Linear and  Nonlinear  Theory 
with x =1.0 and Y = 0 . 2 0 .  
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Figure 27. Radial  Direct  Stress  Resultant for  Spinning  Shell 
with  Fully  Clamped Hub. Linear and Nonlinear  Theory with 

=3.0 and Y =0.20. 
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Figure 29. Tangential  Direct St'ress Resultant  for  Spinning 
Shell  with Fully  Clamped H u b .  Linear  and  Nonlinear  Theory 
with A =0.058 and =0.20. 
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Figure  30. Tangen t i a l  Direct S t r e s s   R e s u l t a n t   f o r   S p i n n i n g  
S h e l l   w i t h   F u l l y  Clamped H u b .  Linear   and  Nonlinear   Theory 
w i t h  A =1.0 and v =0.20. 
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Figure  31. Tangen t i a l  Direct Stress Resu l t an t   €o r   Sp inn ing  
S h e l l   w i t h   F u l l y  Clamped H u b .  Linear   and  Nonlinear   Theory 
w i t h  A = 3 . 0  and =0:20. 

- 214 - 



A = 7.0 2 = 0.125 
b 
u = 0.20 

1.0 

0.8 

0 .6  

0.4  

0 .  

Nan-Linear 

0 0 0 Linear 

0.01, 
0 .  s 

" 

" 

t= 6 . 0  

2 - -  (y = 120 

. .  -7". I I 1 
0 . 0  0.2 0 ;  4 0.6 0.8 1.0 

/ /b"- lS0 

X = -  r 
b 

Figure  32. Tangen t i a l  Direct S t r e s s   R e s u l t a n t  €or Spinning 
Shell w i t h   F u l l y  Clamped H u b .  Linear  and  Nonlinear  Theory 
wi th  A =7.0 and Y =0.20. 
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Figure  33 .  Radia l   Bend ing   S t r e s s   Resu l t an t   fo r   Sp inn ing  
Shell w i t h   F u l l y  Clamped H u b .  L inear  and  Nonlinear  Theory 
wi th  x =0.058 and L/ =0.20. 
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Figure 34. Radial  Bending  Stress  Resultant  for  Spinning 
Shell  with  Fully  Clamped H u b .  Linear and  Nonlinear  Theory 
with h =1.0 and V =O. 20. 
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Figure  35. Rad ia l   Bend ing   S t r e s s   Resu l t an t   fo r   Sp inn ing  
S h e l l   w i t h   F u l l y  Clamped H u b .  Linear  and  Nonlinear  Theory 
wi th  =3.0 and Y =0.20. 
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Figure  36. Radia l   Bend ing   S t r e s s   Resu l t an t   fo r   Sp inn ing  
S h e l l   w i t h   F u l l y  Clamped Hub. Linear  and  Nonlinear  Theory 
wi th  A =7.0 and V =0.20. 
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Figure  37. Tangential   Bending Stress Resu l t an t   €o r   Sp inn ing  
S h e l l   w i t h  Fu l ly  Clamped H u b .  Linear  and  Nonlinear  Theory 
w i t h  )r =0.058 and U =0.20. 
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Figure  38. Tangent ia l   Bending   S t ress   Resul tan t  fo r  Spinning 
S h e l l   w i t h   F u l l y  Clamped H u b .  Linear  and  Nonlinear  Theory 
wi th  A =1.0 and Y =O .20. 
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Figure 39. Tangential  Bending  Stress  Resultant  €or  Spinning 
Shell  with Fully  Clamped H u b .  Linear  and  Nonlinear  Theory 
with =3.0 and J J = 0 . 2 0 .  
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Figure 4 0 .  Tangent ia l   Bending   S t ress   Resul tan t  €or Spinning 
S h e l l ' w i t h   F u l l y  Clamped H u b .  Linear  and  Nonlinear  Theory 
wi th  x =7.0 and Y =0.20. 
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Figure 41. Slope  of  Deflection  Curve  for  Spinning  Shell 
with  Fully  Clamped Hub. Nonlinear  Theory  with A =1.0 
and v =0.20. 
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Figure  42. Slope   of   Def lec t ion  Curve f o r   S p i n n i n g   S h e l l  
w i th   Fu l ly  Clamped H u b .  Nonlinear  Theory  with A =3.0 
and V = 0 . 2 0 .  
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Figure 43. Slope  of  Deflection  Curve  €or  Spinning  Shell 
with  Fully  Clamped H u b .  Nonlinear  Theory  with x =7.0 
and V =0.20. 
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